Advertisement

Informationsvermittlung durch elektrische Erregung

  • J. Dudel
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Zwei Systeme vermitteln Information im Organismus über größere Entfernungen: Hormone und Nerven. Das Prinzip der Freisetzung, der Verbreitung und der Wirkung von Hormonen ist oben angesprochen worden ; es wird im Kap. 17 ausführlich dargestellt. Das schnellere und „individuellere“ System sind die Nerven. Deren Leistungen werden in den folgenden Kapiteln detailliert behandelt. Zunächst sollen hier die Reaktionsweisen der einzelnen Nervenzellen oder Neurone, dann die Prinzipien ihrer Interaktionen (Kap. 3) besprochen werden. Kennzeichnend für Nervenzellen ist, daß sie ihre Funktionen mit Hilfe von Änderungen des Membranpotentials bewerkstelligen, und wir müssen deshalb detaillierter auf die Zellpotentiale eingehen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Lehr- und Handbücher

  1. 1.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.: Molecular Biology of the cell. New York and London: Garland Publishing Inc. 1983Google Scholar
  2. 2.
    Cooke, I., Lipkin, M.: Cellular Neurophysiology, a source book. New York: Holt, Rinehart and Winston 1972 (Sammlung wichtiger Originalarbeiten)Google Scholar
  3. 3.
    Hille, B.: Ionic channels of excitable membranes. Sunderland, Mass.: Sinauer Assoc., 1984Google Scholar
  4. 4.
    Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (Hrsg.): Biophysik. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  5. 5.
    Kandel, E.R., Schwartz, J.H. (Hrsg.): Principles of neural science. New York, Amsterdam, Oxford: Elsevier 1985Google Scholar
  6. 6.
    Kuffler, S.W., Nicholls, J.G., Martin, A.R.: From neuron to brain, Second Edition Sunderland, Mass., Sinauer Associates (1984)Google Scholar

Einzel- und Übersichtsarbeiten

  1. 7.
    Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631 (1956)Google Scholar
  2. 8.
    Aldrich, R.W.: Voltage dependent gating of sodium channels: towards an integrating approach. Trends Neurosci. 9, 82–86 (1986)CrossRefGoogle Scholar
  3. 9.
    Armstrong, C.M.: Sodium channels und gating currents. Physiol. Rev. 61, 644–683 (1981)PubMedGoogle Scholar
  4. 10.
    Connor, J.A., Stevens, C.F.: Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J. Physiol. (Lond.) 213, 1–19 (1971)Google Scholar
  5. 11.
    Gasser, H.S., Grundfest, H.: Axon diameters in relation to the spike dimension and the conduction velocity in mammalian A-fibers. Amer. J. Physiol. 127, 393 (1939)Google Scholar
  6. 12.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 (1981)PubMedCrossRefGoogle Scholar
  7. 13.
    Heinemann, U., Lux, D.: Ionic changes during experimentally induced epilepsies. In: Progress in Epilepsy, R.C. Rose, Ed.. London: Pitman Medical, p. 87–102 (1983)Google Scholar
  8. 14.
    Hille, B.: Ionic channels in excitable membranes. Biophys. J. 22, 283–294 (1978)PubMedCrossRefGoogle Scholar
  9. 15.
    Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497 (1952)Google Scholar
  10. 16.
    Hodgkin, A.L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500 (1952)Google Scholar
  11. 17.
    Hodgkin, A.L., Rushton, W.A.H.: The electrical constants of crustacean nerve fibre. Proc. roy. Soc. B 133, 444 (1946)CrossRefGoogle Scholar
  12. 18.
    Huxley, A.F., Stämpfli, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315 (1949)Google Scholar
  13. 19.
    Kameyama, M., Hofmann, F., Trautwein, W.: On the mechanism of β-adrenergic regulation of the Ca channel in the guineapig heart. Pflügers Arch. 405, 285–293 (1985)PubMedCrossRefGoogle Scholar
  14. 20.
    Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B. 135, 506 (1948)CrossRefGoogle Scholar
  15. 21.
    Läuger, P.: Ionic channels with conformational substates. Biophys. J. 47, 581–590 (1985)PubMedCrossRefGoogle Scholar
  16. 22.
    Lloyd, D.P.C., Chang, H.T.: Afferent fibres in muscle nerves. J. Neurophysiol. 11, 199 (1948)PubMedGoogle Scholar
  17. 23.
    Meves, H.: Inactivation of the sodium permeability in squid giant nerve fibres. Prog. Biophys. Mol. Biol. 33, 207–230 (1978)PubMedCrossRefGoogle Scholar
  18. 24.
    Neher, E., Sakmann, B., Steinbach, J.H.: The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes. Pflügers Arch. 375, 219–228 (1978)PubMedCrossRefGoogle Scholar
  19. 25.
    Neumcke, B., Schwarz, W., Stämpfli, R.: Block of Na channels in the membrane of myelinated nerve by benzocaine. Pflügers Arch. 390, 230–236 (1981)PubMedCrossRefGoogle Scholar
  20. 26.
    Neumcke, B., Stämpfli, R.: Heterogeneity of external surface charges near sodium channels in the nodal membrane of frog nerve. Pflügers Arch. 401, 125–131 (1984)PubMedCrossRefGoogle Scholar
  21. 27.
    Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, 1 (1966)PubMedGoogle Scholar
  22. 28.
    Rang, H.P., Ritchie, J.M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lond.) 196, 183 (1968)Google Scholar
  23. 29.
    Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966Google Scholar
  24. 30.
    Schwarz, W., Pallade, P.T., Hille, B.: Local anesthetics: Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys. J. 20, 343–368 (1977)PubMedCrossRefGoogle Scholar
  25. 31.
    Sigworth, F.J., Neher, E.: Single Na+ channel currents observed in cultured red muscle cells. Nature (Lond.) 287, 447–449 (1980)CrossRefGoogle Scholar
  26. 32.
    Trautwein, W., Pelzer, D.: Voltage dependent gating of single calcium channels in cardiac cell membranes and its modulation by drugs. In: Calcium physiology, D. Marmé, Editor. Berlin, Heidelberg, New York, Toronto: Springer (im Druck) (1986)Google Scholar
  27. 33.
    Ulbricht, W.: Kinetics of drug action and equilibrium results at the node of Ranvier. Physiol. Rev. 61, 785–828 (1981)PubMedGoogle Scholar
  28. 34.
    White, M.W., Bezanilla, B.: Activation of squid axon K+ channel. Ionic and gating current studies. J. Gen. Physiol. 85, 539–554, (1985)PubMedCrossRefGoogle Scholar
  29. 35.
    Quandt, F.N., Yeh, J.Z., Narahashi, T.: All or none block of single Na+ channels by tetrodotoxin. Neurosci. Lett. 54, 77–83 (1985)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Dudel

There are no affiliations available

Personalised recommendations