The Fractal Structure of Multihadron Production at High Energies

Conference paper


We first give a short general introduction to intermittency and fractal structure, and discuss how self-similar patterns can arise in particle production. Then we show that at high energies, self-similar jet production leads to a universal power law behaviour for the multiplicity moments as a function of the relative rapidity Y/δy, once the rapidity intervals δy are large enough to be outside the usual resonance region (δy ≥1 – 2). Data from the UA5 experiment at CERN (for \( \sqrt{s} \) = 200,546 and 900 GeV) are found to agree very well with the predicted universal behaviour.


Fractal Space Rapidity Interval Multiparticle Production Standard Moment Intermittency Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Sarcevic and H. Satz, Phys. Lett. 233B (1989) 251.CrossRefGoogle Scholar
  2. 2.
    A. Bialas and R. Peschanski, Nucl. Phys. B 273 (1986) 703 and B308 (1988) 803; for a recent survey, see W. Kittel and R. Peschanski, Review on Intermittency in Particle Multiproduction, Preprint Nijmegen HEN-325/Saclay SPhT/89–143 (1989).Google Scholar
  3. 3.
    P. Carruthers and I. Sarcevic, Phys. Rev. Lett. 63 (1989) 1562.Google Scholar
  4. 4.
    A. Capella, K Fialkowski and A. Krzywicki, Phys. Lett. 230B (1989) 149CrossRefGoogle Scholar
  5. 5.
    R. Hagedorn, Nuovo Cim. Suppl. 3 (1965) 147.Google Scholar
  6. 6.
    F. Hausdorff, Math. Ann. 79 (1919) 157.MathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Mandelbrot, The Fractal Geometry of Nature, Freeman and Co. Publ., New York (1982).Google Scholar
  8. 8.
    P. Lipa and B. Buschbeck, Phys. Lett. 223B (1989) 465.CrossRefGoogle Scholar
  9. 9.
    W. Ochs and J. Wosiek, Phys. Lett. 214B (1988) 617.CrossRefGoogle Scholar
  10. 10.
    G. J. Allier et al, Phys. Rep. 154 (1987) 247.Google Scholar
  11. R. E. Ansorge et al,Z. Phys. C 43 (1989) 357.Google Scholar
  12. 12.
    R. C. Hwa, Intermittency in the 03 Branching Model, Oregon Preprint OITS-404 (1989)Google Scholar
  13. C. B. Chiu and R. C. Hwa, Intermittency in Branching Models, Oregon Preprint OITS-424 (1989).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • H. Satz
    • 1
    • 2
  1. 1.Theory DivisionCERNGeneva 23Switzerland
  2. 2.Fakultät für PhysikUniversität BielefeldBielefeld 1Fed. Rep. of Germany

Personalised recommendations