Skip to main content

Water and Energy Relations of Terrestrial Amphibians: Insights from Mechanistic Modeling

  • Chapter
Perspectives of Biophysical Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 12))

Abstract

Amphibians are, in general, the least studied of the vertebrates. However, because amphibians are the most primitive terrestrial vertebrates, and therefore most amphibian species are coupled to aquatic environments during some or all of their life cycles, the relationship of these animals to their environmental water has been studied extensively. Yet, in a sampling of 68 papers dealing with water relations of amphibians (Table 19.1), 67 papers reported new experimental and/or descriptive data, only two papers appear to have incorporated experimental data into mechanistic models of water transfer, and none viewed the water relations of amphibians in terms of a total water-budget model. Furthermore, almost no research has been reported that illuminates the mechanistic interrelatedness of the total water- and energy-balance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E. F.: 1927. The skin and the kidney as regulators of the body volume of frogs. J. Expt. Zool. 47, 1–30.

    Article  CAS  Google Scholar 

  • Adolph, E. F.: 1932. The vapor tension relations of frogs. Biol. Bull. 62, 112–125.

    Article  Google Scholar 

  • Adolph, E. F.: 1933. Exchanges of water in the frog. Biol. Rev. 8, 224–240.

    Article  Google Scholar 

  • Balinsky, J. B., Cragg, M., Baldwin, E.: 1961. The adaptation of amphibian waste nitrogen excretion to dehydration. Comp. Biochem. Physiol. 5, 236–244.

    Google Scholar 

  • Bartholomew, G. A.: 1970. Energy metabolism. In Animal function: principles and adaptations (ed. M. S. Gordon). New York: Macmillan.

    Google Scholar 

  • Bentley, P. J.: 1966. Adaptations of amphibia to arid environments. Science 152 (3722), 619–623.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, P. J., Lee, A. K., Main, A. R.: 1958. Comparison of dehydration and hydration of two genera of frogs (Heleioporus and Neobatrachus) that live in areas of varying aridity. J. Expt. Biol. 35, 677–684.

    CAS  Google Scholar 

  • Brattstrom, B. H.: 1963. A preliminary review of the thermal requirements of amphibians. Ecology 44 (2), 238–255.

    Article  Google Scholar 

  • Brattstrom, B. H.: 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111.

    Article  PubMed  CAS  Google Scholar 

  • Brattstrom, B. H.: 1970. Amphibia. In Comparative physiology of thermoregulation (ed. G. C. Whittow), pp. 135–166. New York: Academic Press.

    Google Scholar 

  • Brattstrom, B. H., Lawrence, P.: 1962. The rate of thermal acclimation in anuran amphibians. Phisiol. Zool. 35, 148.

    Google Scholar 

  • Campbell, P. M., Davis, W. K.: 1971. The effects of various combinations of temperature and relative humidity on the evaporative water loss of Bufo valliceps. Texas J. Sci. 22(4), 389–402.

    Google Scholar 

  • Chew, R. M., Dammann, A. E.: 1961. Evaporative water loss of small vertebrates, as measured with an infrared analyzer. Science 133, 384–385.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, N. W.: 1952. Comparative rate of dehydration and hydration in some California salamanders. Ecology 33(4), 462–479.

    Article  Google Scholar 

  • DeWitt, C. B.: 1967. Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol. Zool. 40, 49–66.

    Google Scholar 

  • Deyrup, I. J.: 1964. Water balance and kidney. In Physiology of the amphibia (ed. J. A. Moore). New York: Academic Press.

    Google Scholar 

  • Dole, J. W.: 1965a. Spatial relations in natural populations of the leopard frog, Rana pipiens (Schreber) in northern Michigan. Am. Midland Naturalist 74 (2), 464–478.

    Article  Google Scholar 

  • Dole, J. W.: 1965b. Summer movements of adult leopard frogs, Rana pipiens (Schreber) innorthern Michigan. Ecology 46 (3), 236–255.

    Google Scholar 

  • Dole, J. W.: 1967a. The role of substrate moisture and dew in the water economy of leopard frogs, Rana pipiens. Copeia 1967(1), 141–149.

    Article  Google Scholar 

  • Dole, J. W.: 1967b. Spring movements of leopard frogs, Rana pipiens (Schreber) in northern Michigan. Am. Midland Naturalist 78(1), 167–181.

    Article  Google Scholar 

  • Dole, J. W.: 1971. Dispersal of recently metamorphosed leopard frogs Rana pipiens. Copeia 1971(2), 221–228.

    Article  Google Scholar 

  • Dunlap, D. G.: 1968. Critical thermal maximum as a function of temperature of acclimation in two species of hylid frogs. Physiol. Zool. 41, 432–439.

    Google Scholar 

  • Elkan, E.: 1968. Mucopolysaccharides in the anuran defense against desiccation. J. Zool. 155, 19–53.

    Article  Google Scholar 

  • Farrell, M. P.: 1971. Effect of temperature and photoperiod acclimations on the water economy of Hyla erueifer. Herpetologica 27(1), 41–48.

    Google Scholar 

  • Farrell, M. P., MacMahon, J. A.: 1969. An eco-physiological study of water economy in eight species of tree frogs (Hylide). Herpetologica 4, 279–294.

    Google Scholar 

  • Flugge, W.: 1954. Four-place tables of transcendental functions. Oxford: Pergamon Press.

    Google Scholar 

  • Gardner, W. R.: 1965. Rainfall, runoff, and return. Meteor. Monogr. 6(28), 138–148.

    Google Scholar 

  • Gordon, M. S., Schmidt-Nielsen, K., Kelly, H. M.: 1961. Osmotic regulation in the crab-eating frog (Rana cancrivora). J. Expt. Biol. 38, 659–678.

    CAS  Google Scholar 

  • Gray, J.: 1928. The role of water in the evolution of the terrestrial vertebrates. Brit. J. Expt. Biol. 6, 26.

    Google Scholar 

  • Greenwald, L.: 1972. Sodium balance in amphibians from different habitats. Physiol. Zool. 45 (3), 229–237.

    CAS  Google Scholar 

  • Heatwole, H., Lim, K.: 1961. Relation of substrate moisture to absorption and loss of water of the salamander, Plethodon cinereus Ecology 42 (4), 814–819.

    Article  Google Scholar 

  • Heatwole, H., Lim, K., Torries, F., Blasini de Austin, S., Heatwole, A.: 1969. Studies of anuran water balance. I. Dynamics of evaporative water loss by the coqui, Eleutherodactylus portorieensis. Comp. Biochem. Physiol. 28, 245–269.

    Article  PubMed  CAS  Google Scholar 

  • Heatwole, H., Lim, K., Torries, F., Blasini de Austin, S., Heatwole, A., Cameron, E., Webb, G. J. W.: 1971. Studies on anuran water balance. II. Desiccation in the Australian frog, Notaden bennetti. Herpetologica 27(4), 365–378.

    Google Scholar 

  • Hevesy, G. V., Hofer, E., Krogh, A.: 1935. The permeability of the skin of frogs to water as determined by D2O and H2O. Skandinav. Archiv. 73, 199–214.

    Google Scholar 

  • Hutchison, V. H.: 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34, 92–125.

    Google Scholar 

  • Hutchison, V. H., Ferrance, M. R.: 1970. Thermal tolerances of Rana pipiens acclimated to daily temperature cycles. Herpetologica 26 (1), 1–8.

    Google Scholar 

  • Hutchison, V. H., Ferrance, M. R., Whitford, W. G., Kohl, M.: 1968. Relation of body size and surface area to gas exchange in anurans. Physiol. Zool. 41(1), 65–85.

    Google Scholar 

  • Krogh, A.: 1939. Osmotic regulation in aquatic animals. New York: Cambridge Univ. Press.

    Google Scholar 

  • Jameson, D. L.: 1965. Rate of weight loss of tree frogs at various temperatures and humidities. Ecology 47(4), 605–613.

    Article  Google Scholar 

  • Johnson, C. R.: 1969. Water absorption response of some Australian anurans. Herpetologica 25(3), 171–172.

    Google Scholar 

  • Jorgensen, C. B.: 1949. Permeability of the amphibian skin. II. Effect of moulting of the amphibian skin on the permeability to water and electrolytes. Acta Physiol. Scand. 18, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Lasiewski, R. C., Bartholomew, G. A.: 1969. Condensation as a mechanism for water gain in nocturnal desert poililotherms. Copeia 1969(2), 405–407.

    Article  Google Scholar 

  • Lee, A. K.: 1968. Water economy of the burrowing frog, Heleiporus eyrei (Gray). Copeia 1968(4), 741–745.

    Article  Google Scholar 

  • Lee, A. K., Mercer, E. H.: 1967. Cocoon surrounding desert-dwelling frogs. Science 157, 87–88.

    Article  PubMed  CAS  Google Scholar 

  • Lillywhite, H. B.: 1970. Behavioral temperature regulation in the bullfrog, Rana eatesbeiana. Copeia 1970(1), 158–168.

    Article  Google Scholar 

  • Lillywhite, H. B.: 1971a. Temperature selection by the bullfrog, Rana eatesbeiana. Comp. Biochem. Physiol. 40A, 213–227.

    Article  Google Scholar 

  • Lillywhite, H. B.: 1971b. Thermal modulation of cutaneous mucous discharge as a determinant of evaporative water loss in the frog, Rana eatesbeinana. Z. Vergleich. Physiol. 73, 84–104.

    Article  Google Scholar 

  • Littleford, R. A., Keller, W. R., Philips, N. E.: 1947. Studies on the vital limits of water loss in plethodontid salamanders. Ecology 28, 440–447.

    Article  Google Scholar 

  • Machin, J.: 1969. Passive water movements through skin of the toad Bufo marinus in air and in water. Am. J. Physiol. 216(6), 1562–1568.

    PubMed  CAS  Google Scholar 

  • MacMahon, J. A.: 1965. An eco-physiological study of the water relations of three species of the salamander genus, Plethodon. South Bend, Ind.: Univ. Notre Dame. Ph.D. diss.

    Google Scholar 

  • Main, A. R., Bentley, P. J.: 1964. Water relations of Australian burrowing frogs and tree frogs. Ecology 45(2), 379–382.

    Article  Google Scholar 

  • Mayhew, W. W.: 1965. Adaptations of the amphibian, Scaphiopus couchi to desert conditions. Am. Midland Naturalist 75(1), 95–109.

    Article  Google Scholar 

  • McClanahan, L.: 1964. Osmotic tolerance of the muscles of two desert-inhabiting toads, Bufo cognatus and Scaphiopus couchi. Comp. Biochem. Physiol. 12, 501–508.

    Article  PubMed  Google Scholar 

  • McClanahan, L.: 1967. Adaptations of the spadefoot toad, Scaphiopus couchi to desert environments. Comp. Biochem. Physiol. 20, 73–99.

    Article  CAS  Google Scholar 

  • McClanahan, L.: 1972. Changes in body fluids of burrowed spadefoot toads as a function of soil water potential. Copeia 1972(2), 209–216.

    Article  Google Scholar 

  • McClanahan, L., Baldwin, R.: 1969. Rate of water uptake through the integument of the desert toad, Bufo punctatus. Comp. Biochem. Physiol. 28, 381–389.

    Article  PubMed  Google Scholar 

  • McCullough, E. M., Porter, W. P.: 1971. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 52(6), 1008–1015.

    Article  Google Scholar 

  • Norris, K. S.: 1967. Color adaptation in desert reptiles and its thermal relationships. In Lizard ecology: a symposium (ed. W. W. Milstead), pp. 162–339. Columbia, Mo.: Univ. Missouri Press.

    Google Scholar 

  • Packer, W. C.: 1963. Dehydration, hydration, and burrowing behavior inHeleioporus eyrei (Gray) (Leptodactyledae). Ecology 44(4), 643–651.

    Article  Google Scholar 

  • Parsons, R. H.: 1970. Mechanisms of water movement into amphibians with special reference to the effect of temperature. Corvallis, Ore.: Oregon State Univ. Ph.D. diss.

    Google Scholar 

  • Porter, W. P., Gates, D. M.: 1969. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 245–270.

    Article  Google Scholar 

  • Ray, C.: 1958. Vital limits and rates of desiccation in salamanders. Ecology 39(1), 75–83.

    Article  Google Scholar 

  • Rey, P.: 1937. Recherehes expérimentales sur l’économie de l’eau chez Ies Batraciens. Ann. Physiol. 13, 1081–1144.

    CAS  Google Scholar 

  • Rose, C. W.: 1966. Agricultural physics. Oxford: Pergamon Press

    Google Scholar 

  • Ruibal, R.: 1962a. The adaptive value of bladder water in the toad, Bufo cognatus. Physiol. Zool. 55(3), 218–223.

    Google Scholar 

  • Ruibal, R.: 1962b. Osmoregulation in amphibians from heterosaline habitats. Physiol. Zool. 35, 133–147.

    Google Scholar 

  • Ruibal, R., Tevis, L., Jr., Roig, V.: 1969. The terrestrial ecology of the spadefoot toad Scaphiopus hammondii. Copeia 1969(3), 571–584.

    Article  Google Scholar 

  • Sawyer, W. H.: 1951. Effect of posterior pituitary extract on permeability of frog skin to water. Am. J. Physiol. 164, 44–48.

    PubMed  CAS  Google Scholar 

  • Schmid, W. D.: 1965. Some aspects of the water economics of nine species of amphibians. Ecology 46(3), 261–269.

    Article  Google Scholar 

  • Schmid, W. D., Barden, R. E.: 1965. Water permeability and lipid content of amphibian skin. Comp. Biochem. Physiol. 15, 423–427.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen, B., Forster, R. P.: 1954. The effect of dehydration and low temperature on renal function in the bullfrog. J. Cellular Comp. Physiol. 44, 233–246.

    Article  CAS  Google Scholar 

  • Shoemaker, V. H.: 1964. The effects of dehydration on electrolyte concentrations in a toad, Bufo marinus. Comp. Biochem. Physiol. 13, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, V. H.: 1965. The stimulus for the water balance response to dehydration in toads. Comp. Biochem. Physiol. 15, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, V. H., McClanahan, L., Jr., Ruibal, R.: 1969. Seasonal changes in body fluids in a field population of spadefoot toads. Copeia 1969(3), 585–591.

    Article  Google Scholar 

  • Shoemaker, V. H., McClanahan, L., Jr., Ruibal, R., Waring, H.: 1968. Effect of hypothalamic lesions on the water balance responses of a toad (Bufo marinus). Comp. Biochem. Physiol. 24, 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, V. H., McClanahan, L., Jr., Ruibal, R., Waring, H., Balding, D., Ruibal, R., McClanahan, L. L., Jr.: 1972. Urincotelism and low evaporative water loss in a South American frog. Science 175, 1018–1020.

    Article  PubMed  CAS  Google Scholar 

  • Spight, T. M.: 1967. Evaporation from toads and water surfaces. Nature 214 (5090), 835–836.

    Article  Google Scholar 

  • Spight, T. M.: 1968a. The water economy of salamanders: evaporative water loss. Physiol. Zool. 41(2), 195–203.

    Google Scholar 

  • Spight, T. M.: 1968b. The water economy of salamanders: exchange of water with the soil. Biol. Bull. 132, 126–132.

    Article  Google Scholar 

  • Spotila, J. R.: 1972. Role of temperature and water in the ecology of lungless salamanders: Ecol. Monogr. 41(1), 195–225.

    Google Scholar 

  • Stille, W. T.: 1958. The water absorption response of an anuran. Copeia 1958(3), 217–218.

    Article  Google Scholar 

  • Stirling, W.: 1877. On the extent to which absorption can take place through the skin of the frog. J. Anat. Physiol. 11, 529.

    PubMed  CAS  Google Scholar 

  • Thorson, T. B.: 1955. The relationship of water economy to terrestrialism in amphibians. Ecology 36(1), 100–116.

    Article  Google Scholar 

  • Thorson, T. B.: 1956. Adjustment of water loss in response to desiccation in amphibians. Copeia 1956 (4), 23–237.

    Article  Google Scholar 

  • Thorson, T. B.: 1964. The partitioning of body water in amphibia. Physiol. Zool. 37(4), 395–399.

    Google Scholar 

  • Thorson, T. B., Svihla, A.: 1943. Correlation of the habitats of amphibians with their ability to survive the loss of body water. Ecology 24(3), 374–381.

    Article  Google Scholar 

  • Tracy, C. R.: 1972. A model of the water and energy dynamic interrelationships between an amphibian and its environment. Madison, Wise.: Univ. Wisconsin. Ph.D. diss.

    Google Scholar 

  • Walker, R. F., Whitford, W. G.: 1970. Soil water absorption capabilities in selected species of anurans. Herpetologica 26, 411–418.

    Google Scholar 

  • Warburg, M. R.: 1965. Studies on the water economy of some Australian frogs. Austral. J. Zool. 13, 317–330

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Tracy, C.R. (1975). Water and Energy Relations of Terrestrial Amphibians: Insights from Mechanistic Modeling. In: Gates, D.M., Schmerl, R.B. (eds) Perspectives of Biophysical Ecology. Ecological Studies, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87810-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87810-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87812-1

  • Online ISBN: 978-3-642-87810-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics