Preparation and Purification of Peroxisomes; Subfractionation of Purified Peroxisomes; Acyl-CoA Oxidase Activity Measurements

  • P. P. Van Veldhoven
  • C. Brees
  • A. Völkl
Part of the Springer Laboratory book series (SLM)


The isolation of peroxisomes is generally accomplished in three steps. After homogenisation of the tissue or disruption of the cells, a subcellular fraction enriched in peroxisomes is obtained by differential centrifugation (for a comprehensive treatise on centrifugation, see [10]). This fraction is then further separated by means of density gradient centrifugation. Such a procedure will be demonstrated on liver, obtained from control rats and from rats treated with bezafibrate. Hypolipidemic drugs such as bezafibrate cause a pronounced proliferation of peroxisomes in liver and kidney of rodents. This is associated with hepatomegaly and the induction of a particular set of peroxisomal enzymes involved in the β-oxidation of fatty acids [8] (see Exp. 1.3).


Peroxisomal Membrane Urate Oxidase Peroxisomal Fraction Bile Acid Intermediate Nycodenz Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Declercq PE, Haagsman HP, Van Veldhoven P, Debeer LJ, van Golde LMG, Mannaerts GP (1984) Rat liver dihydroxyacetone-phosphate acyltransferases and their contribution to glycerolipid synthesis. J Biol Chem 259:9064 – 9075PubMedGoogle Scholar
  2. 2.
    De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem J 60:604–617Google Scholar
  3. 3.
    Evans WH (1982) Subcellular membranes and isolated organelles: preparative techniques and criteria for purity. Techniques in Lipid and Membrane Biochemistry B407a: 1–46Google Scholar
  4. 4.
    Ghosh MK, Hajra AK (1986) A rapid method for the isolation of peroxisomes from rat liver. Anal Biochem 159:169 – 174PubMedCrossRefGoogle Scholar
  5. 5.
    Hajra AK, Wu D (1985) Preparative isolation of peroxisomes from liver and kidney using Metrizamide density gradient centrifugation in a vertical rotor. Anal Biochem 148:233 – 244PubMedCrossRefGoogle Scholar
  6. 6.
    Hartl FU, Just WW, Köster A, Schimassek H (1985) Improved isolation and purification of rat liver peroxisomes by combined rate zonal and equilibrium density centrifugation. Arch Biochem Biophys 237:124–134PubMedCrossRefGoogle Scholar
  7. 7.
    Leighton F, Poole B, Beaufay H, Baudhuin P, Coffey JW, Fowler S, de Duve C (1968) The large-scale separation of peroxisomes, mitochondria and lysosomes from the liver of rats injected with Triton WR-1339. J Cell Biol 37:482 – 513PubMedCrossRefGoogle Scholar
  8. 8.
    Lock EA, Mitchell AM, Elcombe CR (1989) Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 29:145 – 163PubMedCrossRefGoogle Scholar
  9. 9.
    Pertoft H, Laurent TC, Laas T, Kagedall L (1978) Density gradients prepared from colloidal silica particles coated with polyvinylpyrrolidone (Percoll). Anal Biochem 88:271 – 282PubMedCrossRefGoogle Scholar
  10. 10.
    Rickwood D (1989) Centrifugation — A practical approach (2nd Ed.) Practical Approach Series. IRL Press, Oxford.Google Scholar
  11. 11.
    Van Veldhoven PP, Mannaerts GP (1993) Assembly of peroxisomal membranes. In: Eds. Maddy AH and Harris JR. Subcellular Biochemistry, membrane biogenesis. Plenum Publishing Press, New York (in press)Google Scholar
  12. 12.
    Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of β-oxidation: Evidence fro the presence of a pore-forming protein. J Biol Chem 262:4310 – 4318PubMedGoogle Scholar
  13. 13.
    Verheyden K, Fransen M, Van Veldhoven PP, Mannaerts GP (1992) Presence of small GTP-binding proteins in the peroxisomal membrane. Biochim Biophys Acta 1109:48 – 54PubMedCrossRefGoogle Scholar
  14. 14.
    Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257 – 265PubMedCrossRefGoogle Scholar
  15. 1.
    Fujiki Y, Fowler S, Shio H, Hubbard AL, Lazarow PB (1982) Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: Comparison with endoplasmic reticulum and mitochondrial membranes. J Cell Biol 93:103–110PubMedCrossRefGoogle Scholar
  16. 2.
    Fujiki Y, Rachubinski RA, Lazarow PB (1984) Synthesis of a major integral membrane polypeptide of rat liver peroxisomes on free polysomes. Proc Natl Acad Sci 81:7127–7131PubMedCrossRefGoogle Scholar
  17. 3.
    Kamijo K, Taketani S, Yokota S, Osumi T, Hashimoto T (1990) The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP binding protein superfamily. J Biol Chem 265:4531–4540Google Scholar
  18. 4.
    Köster A, Heisig M, Heinrich PC, Just WW (1986) In vitro synthesis of peroxisomal membrane polypeptides. Biochem Biophys Res Comm 137:626–632PubMedCrossRefGoogle Scholar
  19. 5.
    Suzuki Y, Ori T, Takiguchi M, Mori M, Hijikata M, Hashimoto T (1987) Biosynthesis of membrane polypeptides of rat liver peroxisomes. J Biochem 101:491–496PubMedGoogle Scholar
  20. 6.
    Van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197PubMedCrossRefGoogle Scholar
  21. 7.
    Van Veldhoven PP, Debeer LJ, Mannaerts GP (1983) Water- and solute accessible spaces of purified peroxisomes. Biochem J 210:685–693PubMedGoogle Scholar
  22. 8.
    Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of β-oxidation. J Biol Chem 262:4310–4318PubMedGoogle Scholar
  23. 1.
    Guilbault G, Kramer DN, Hackley E (1967) New substrate for fluorometric determination of oxidative enzymes. Anal Chem 39:271CrossRefGoogle Scholar
  24. 2.
    Inestrosa NC, Bronfman M, Leighton F (1980) Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochem Biophys Res Commun 95:7 – 12PubMedCrossRefGoogle Scholar
  25. 3.
    Mannaerts GP, Van Veldhoven PP (1992) Role of peroxisomes in mammalian metabolism. Cell Biochem Funct 10:141 – 151PubMedCrossRefGoogle Scholar
  26. 4.
    Osumi T, Hashimoto T, Ui N (1980) Purification and properties of acyl-CoA oxidase from rat liver. J Biochem 87:1735 – 1746PubMedGoogle Scholar
  27. 5.
    Schepers L, Van Veldhoven PP, Casteels M, Eysen HJ, Mannaerts GP (1990). Presence of three acyl-CoA oxidases in rat liver peroxisomes. An inducible fatty acyl-CoA oxidase, a non-inducible fatty acyl-CoA oxidase and a non-inducible trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 265:5242 – 5246PubMedGoogle Scholar
  28. 6.
    Van den Bosch H, Schutgens RBH, Wanders RJA, Tager J (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157 – 197PubMedCrossRefGoogle Scholar
  29. 7.
    Van Veldhoven PP, Vanhove G, Vanhoutte F, Dacremont G, Parmentier G, Eysen HJ, Mannaerts GP (1991) Identification and purification of a branched chain fatty acyl-CoA oxidase. J Biol Chem 266:24676 – 24683PubMedGoogle Scholar
  30. 8.
    Van Veldhoven PP, Vanhove G, Asselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: Palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase) and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065 – 20074PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • P. P. Van Veldhoven
  • C. Brees
  • A. Völkl

There are no affiliations available

Personalised recommendations