Movement-Induced Orientation: A Potential Mechanism of Cartilage Collagen Network Morphogenesis

  • K. Ito
  • S. Tepic
Conference paper


Articular cartilage is a layer of tissue lining the articulating osseous ends in diarthroidal joints. Its primary function is to provide a durable, low friction, load-bearing surface. Cartilage on cartilage, lubricated with synovial fluid, has a coefficient of friction of 0.02–0.005 (Charnley 1959), and regularly provides problem-free performance for a lifetime. Although this may not seem so remarkable, comparison to synthetic bearings is quite revealing. The coefficient of friction for steel on steel lubricated with oil is 0.1 (Jones 1936) and that of dry Teflon on Teflon is 0.04 (Bowden and Tabor 1950). Furthermore, the life of mechanical bearings is often less than 20 years. Articular cartilage is an exceptional material with an optimal design for its function.


Articular Cartilage Collagen Fibril Collagen Orientation Collagen Network Cartilage Extracellular Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong CG, Bahrani AS, Gardner MA (1979) In vitro measurement of articular cartilage deformations in the intact human hip joint under load. J Bone Joint Surg 61A: 744–755PubMedGoogle Scholar
  2. Baer E, Cassidy 11, Hiltner A (1988) Hierarchical structure of collagen and its relationship to the physical properties of tendon. In: Nimni ME (ed) Collagen CRC Press Inc., Boca Raton, pp 177–199Google Scholar
  3. Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Zellforsch 2: 783–862CrossRefGoogle Scholar
  4. Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103: 231–240PubMedCrossRefGoogle Scholar
  5. Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci USA 86: 4549–4553PubMedCrossRefGoogle Scholar
  6. Bowden FP, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, London, pp 165–166Google Scholar
  7. Caterson B, Lowther DA (1978) Changes in the metabolism of the proteoglycans from sheep articular cartilage in response to mechanical stress. Biochim Biophys Acta 540: 412–422CrossRefGoogle Scholar
  8. Charnley J (1959) Lubrication of animal joints. Inst Mech Eng, London, Proc Symp Biomech, pp 12–22Google Scholar
  9. Clark JM (1985) The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study. J Orthop Res 3: 17–29Google Scholar
  10. Cox RG (1970) The motion of long slender bodies in a viscous fluid part I: general theory. J Fluid Mech 44: 791–810CrossRefGoogle Scholar
  11. Grodzinsky AJ, Kim YJ, Buschmann MD, Garcia AM, Quinn TM, Hunziker EB (1998) Response of the chondrocyte to mechanical stimuli. In: Brandt KD, Doherty M, Lohmander LS (eds) Osteoarthritis. Oxford University Press, New York, pp 123–136Google Scholar
  12. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Martinus Nijhoff, Den HagueGoogle Scholar
  13. Ito K (1994) Movement-induced orientation of collagen fibrils in cartilaginous tissues (ScD Thesis). Massachusetts Institute of Technology, Cambridge, MassachusettsGoogle Scholar
  14. Ito K, Tepic S, Mann RW (1996) A mechanism for the orientation of collagen in cartilage. 42nd Annual Meeting of the Orthopaedic Research Society, Atlanta, Georgia, 21: 568Google Scholar
  15. Jones ES (1936) Joint lubrication. Lancet 1: 1043–1044CrossRefGoogle Scholar
  16. K. Ito and S. Tepic Jurvelin J, Kiviranta I, Saamanen AM, Tammi M, Helminen HJ (1989) Partial restoration of immobilization-induced softening of canine articular cartilage after remobilization of the knee (stifle) joint. J Orthop Res 7: 352–358Google Scholar
  17. Kääb MJ, Richards RG, Nötzli H (1996) Microwave enhanced preservation for morphologic studies of articular cartilage. 42nd Annual Meeting of the Orthopaedic Research Society. Orthopaedic Research Society 21: 323Google Scholar
  18. Kim YJ, Bonassar LJ, Grodzinsky AJ (1995) The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J Biomech 28: 1055–1066PubMedCrossRefGoogle Scholar
  19. Laurent TC, Preston BN, Pertoft H, Gustaffson B, McCabe M (1975) Diffusion of linear polymers in hyaluronate solutions. Eur J Biochem 53: 129–136CrossRefGoogle Scholar
  20. LeBlond CP, Wright GM (1981) Steps in the elaboration of collagen by odontoblasts and osteoblasts. In: Hand AR, Oliver C (eds) Methods in cell biology. Academic Press, New York, pp 167–189Google Scholar
  21. Macirowski T, Tepic S, Mann RW (1994) Cartilage stresses in the human hip joint. J Biomech Eng 116: 10–18PubMedCrossRefGoogle Scholar
  22. Maroudas A (1979) Physicochemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, Tunbridge Wells, Kent, pp 215–290Google Scholar
  23. Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177: 492–500PubMedCrossRefGoogle Scholar
  24. Meachim G, Stockwell RA (1979) The matrix. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, Tunbridge Wells, Kent, pp 1–50Google Scholar
  25. Mow VC, Holmes MH, Lai WM (1984a) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17: 377–394PubMedCrossRefGoogle Scholar
  26. Mow VC, Mak AF, Lai WM (1984b) Viscoelastic properties of proteoglycan subunits and aggregates in varying solution concentrations. J Biomech 17: 325–338PubMedCrossRefGoogle Scholar
  27. Nimni ME (1975) Molecular structure and function of collagen in normal and diseased tissues. In: Burleigh PM, Poole AR (eds) Dynamics of connective tissue macromolecules. American Elsevier, New York, pp 33–79Google Scholar
  28. O’Conner P, Bland C, Gardner DL (1980) Fine structure of artificial splits in femoral condylar cartilage of the rat: a scanning electron microscopic study. J Path 132: 169–179CrossRefGoogle Scholar
  29. Ogston AG, Preston BN, Wells JD (1973) On the transport of compact particles through solutions of chain polymers. Proc Royal Soc (London) A333: 297–309CrossRefGoogle Scholar
  30. Orkin RW, Pratt RM, Martin GR (1976) Undersulfated chondroitin sulfate in the carti-lage matrix of brachymorphic mice. Develop Biol 50: 82–94PubMedCrossRefGoogle Scholar
  31. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  32. Richards RG, Kääb MJ (1996) Microwave-enhanced fixation of rabbit articular cartilage. J Microscopy 181: 269–276CrossRefGoogle Scholar
  33. Roth V, Mow VC (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg 62: 1102–1117PubMedGoogle Scholar
  34. Roux W (1985) Beitrag für Morphologie der funktionellen Anpassung. 3. Beschreibung und Erläuterung einer knöchernen Kniegelenksankylose. Archiv Anat Phys Wissensch Med, pp 120–158Google Scholar
  35. Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7: 619–636PubMedCrossRefGoogle Scholar
  36. Slowman SD, Brandt KD (1986) Composition and glycosaminoglycan metabolism of articular cartilage from habitually loaded and habitually unloaded sites. Arthritis Rheum 29: 88–94PubMedCrossRefGoogle Scholar
  37. Stopak D, Wessells NK, Harris AK (1985) Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc Natl Acad Sci USA 82: 2804–2808PubMedCrossRefGoogle Scholar
  38. Tepic S (1982) Dynamics of and entropy production in the cartilage layers of the synovial joint (ScD Thesis). Massachusetts Institute of Technology, Cambridge, MassachusettsGoogle Scholar
  39. Tepic S, Ito K (1997) Orientation mechanisms of collagen. In: Schneider E (ed) Biomechanik des menschlichen Bewegungsapparates. Springer, Berlin Heidelberg New York, pp 204–214CrossRefGoogle Scholar
  40. Vanderplaats GN (1984) Numerical optimization techniques for engineering design: with applications. McGraw-Hill, New YorkGoogle Scholar
  41. Venn M, Maroudas A (1977) Chemical composition of normal and osteoarthrotic femoral head cartilage. Ann Rheum Dis 36: 121–129PubMedCrossRefGoogle Scholar
  42. Weiss C, Rosenberg L, Helfet AJ (1968) An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg [Am] 50: 663–674Google Scholar
  43. Woo SLY, Akeson WH, Jemmott GF (1976) Measurement of nonhomogeneous direc- tional mechanical properties of articular cartilage in tension. J Biomech 9: 785–791PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • K. Ito
  • S. Tepic

There are no affiliations available

Personalised recommendations