Skip to main content

Tissue Engineering in Cartilage Repair: In Vitro and In Vivo Experiments on Cell-Seeded Collagen Matrices

  • Conference paper
  • 147 Accesses

Abstract

The limited healing response of articular cartilage has been reported for over three centuries (Hunter 1743; Paget 1853). Healing of cartilage depends on blood clot formation as a provisional matrix for cell migration and a subsequent cascade of chondroprogenitor cells derived from adjacent cartilage, underlying marrow, or synovium, which eventually leads to the formation of reparative tissue in the defect (Buckwalter et al. 1988; Johnson 1991). The persistence of full thickness chondral defects in the articular surface (i.e. those that do not initially penetrate the subchondral bone) is multifactorial: the lack of blood supply, insufficient fibrin clot formation at the area of injury (Buckwalter et al. 1988; Mankin et al. 1994), the low mitotic activity of chondrocytes, inhibition of synovial cell attachment (Langer and Gross 1974), and stimulation of degrading enzymes (Mankin 1982). It is the variability of the repair process that contributes to the difficulty in predicting results of cartilage repair (Buckwalter et al. 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiel D, Coutts R, Abel M, Stewart W, Harwood F, Akeson W (1985) Rib perichondrial grafts for the repair of full thickness articular cartilage defects. J Bone Joint Surg 67A: 911–920

    PubMed  CAS  Google Scholar 

  • Bentley G, Greer R (1971) Homotransplantation of isolated articular and epiphysial chondrocytes into the joint surfaces of rabbits. Nature 230: 383–385

    Article  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Eng J Med 331: 889–894

    Article  CAS  Google Scholar 

  • Buckwalter J, Hunziker E, Rosenberg L, Coutts R, Adams M, Eyre D (1988) Articular cartilage: composition and structure. In: Woo SL-J, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. AAOS, Park Ridge, IL, pp 405–425

    Google Scholar 

  • Buckwalter J, Mow V (1992) in: Osteoarthritis: Diagnosis and Management, edited by Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ (2nd Edit) Philadelphia, WB Saunders, 1992, pp 71–107

    Google Scholar 

  • Buckwalter J, Rosenberg L, Coutts R, Hunzider E, Reddi A, Mow V (1988) Articular cartilage: injury and repair. In: Woo SL-J, Buckwalter JA (eds) Injury and repair of the musculoskeletal soft tissues. AAOS, Park Ridge, IL, pp 465–482

    Google Scholar 

  • Buckwalter J, Rosenberg L, Hunziker E (1990) Articular cartilage composition, structure, response to injury, and methods of facilitating repair. In: Ewing JW (eds) Articular cartilage and knee joint function: basic science and arthroscopy. Raven Press, New York, pp 19–56

    Google Scholar 

  • Byers P, Conteponti C, Farkas T (1970) A post-mortem study of the hip joint. Ann Rheum Dis 29: 15–31

    Article  PubMed  CAS  Google Scholar 

  • Caplan A, Fink D, Goto T, Linton A, Young R, Wakitani S, Goldberg V, Haynesworth S (1993) Mesenchymal stem cells and tissue repair. Raven Press, New York

    Google Scholar 

  • Chu C, Coutts D, Yoshioka M, Harwood L, Monosov A, Amiel D (1995) Articular cartilage repair using allogenic perichondrocyte-seeded biodegradable poly-lactic acid (PLA): a tissue engineering study. J Biomed Mat Res 29: 1147–1154

    Article  CAS  Google Scholar 

  • Convery FR, Akeson WH, Keown GH (1972) The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Rel Res 82: 253–262

    Google Scholar 

  • Coutts R, Yoshioka M, Amiel D, Hacker S, Harwood F, Monosov A (1994) Cartilage repair using a porous polylactic acid matrix with allogenic perichondrial cells. 40th ORS Meeting, New Orleans, pp 240–241

    Google Scholar 

  • Engkvist O, Johansson SH (1980) Perichondrial arthroplasty: a clinical study in twenty-six patients. Scand J Plast Reconstr Surg 14: 71–87

    Article  PubMed  CAS  Google Scholar 

  • Ficat R, Ficat C, Gedeon P, Toussaint J (1979) Spongialization: a new treatment for diseased patellae. Clin Orthop 144: 74–83

    PubMed  Google Scholar 

  • Freed L, Marquis J, Nohria A, Emmanual J, Mikos A, Langer R (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mat Res 27: 11–23

    Article  CAS  Google Scholar 

  • Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res 28: 891–899

    Article  PubMed  CAS  Google Scholar 

  • Grande DA, Pitman MI, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7: 208–218

    Article  PubMed  CAS  Google Scholar 

  • Grande D, Halberstadt C, Schwartz R, Linton J, Naughton G (1993) Evaluation of extracellular matrix scaffolds for engineering of articular cartilage grafts. 39th ORS Meeting, San Francisco, p 227

    Google Scholar 

  • Green W (1977) Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop Rel Res 124: 327–250

    Google Scholar 

  • Hendrickson D, Nixon A, Erb H, Lust G (1993) Phenotype and biological activity of neonatal equine chondrocytes cultured in a three-dimensional fibrin matrix. Am J Vet Res 55: 410–414

    Google Scholar 

  • Homminga G, van der Linden T, Terwindt-Rouwenhorst E, Drukker J (1989) Repair of articular defects by perichondrial grafts: experiments in the rabbit. Acta Orthop Scand 60: 326–329

    Article  PubMed  CAS  Google Scholar 

  • Hunter W (1743) On the structure and disease of articulating cartilage. Philos Trans R Soc Lond B Biol Sci 42b: 514–521

    Google Scholar 

  • Johnson L (1991) Characteristics of the immediate postarthroscopic blood clot formation in the knee joint. Arthroscopy 7: 14–23

    Article  PubMed  CAS  Google Scholar 

  • Johnson LL (1986) Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy 2: 54–69

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Yasui N, Ohsawa S, Ono K (1984) Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop Rel Res 186: 231–239

    CAS  Google Scholar 

  • Langer F, Gross A. (1974) Immunogenicity of allograft articular cartilage. J Bone Joint Surg 56A: 297–304

    PubMed  CAS  Google Scholar 

  • Mankin H, Mow V, Buckwalter J, Iannotti J, Ratcliffe A (1994) Form and function of articular cartilage. In: Sheldon R Simon (ed) American Academy of Orthopedic Surgeons. Orthopedic Basic Science, pp 1–44

    Google Scholar 

  • Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg 64A: 460–466

    PubMed  CAS  Google Scholar 

  • Nehrer S, Breinan H, Ashkar S, Shortkroff S, Minas T, Sledge C, Yannas J, Spector M (1998) Characteristics of articular chondrocytes seeded in collagen matrices in vitro. Tissue Engineering 4: 175–183

    Article  Google Scholar 

  • Nehrer S, Breinan H, Ramappa A, Hsu H-P, Shortkroff S, Minas T, Spector M (1998) Autologous chondrocyte-seeded type I and type II collagen matrices implanted in a chondral defect in a canine model. ORS, New Orleans, p 377

    Google Scholar 

  • Nehrer S, Breinan H, Ramappa A, Shortkroff S, Young G, Minas T, Sledge C, Yannas J, Spector M (1998) Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mat Res 38: 95–104

    Google Scholar 

  • Nehrer S, Breinan H, Ramappa A, Young G, Shortkroff S, Louie L, Sledge C, Yannas J, Spector M (1997) Matrix collagen type and pore size influence behavior of seeded canine chondrocytes. Biomaterials 18: 769–776

    Article  PubMed  CAS  Google Scholar 

  • Nixon A, Sams A, Lust G, Grande D, Mohammed H (1993) Temporal matrix synthesis and histological features of a chondrocyte laden porous collagen analogue. Am J Vet Res 54: 349–356

    PubMed  CAS  Google Scholar 

  • Paget J (1853) Healing of injuries in various tissues. Lect Surg Pathol T: 262

    Google Scholar 

  • Pridie K (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg 41B: 618–619

    Google Scholar 

  • Radin E (1990) Factors influencing osteoarthrosis progression. Raven Press, New York

    Google Scholar 

  • Rich D, Johnson E, Zhou L, Grande D (1994) The use of periosteal cell/polymer tissue constructs for the repair of articular cartilage defects. 40th ORS meeting, New Orleans, p 241

    Google Scholar 

  • Rodrigo JJ, Steadman RJ, Siliman JF, Fulstone HA (1994) Improvement of fullthickness chondral defects in the human knee after debridement and microfracture using continous passive motion. Am J Knee Surg 7 (3): 109–116

    Google Scholar 

  • Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D (1980) The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. J Bone Joint Surg 62A: 1232–1251

    PubMed  CAS  Google Scholar 

  • Skoog T, Johansson SH (1976) The formation of articular cartilage from free perichondrial grafts. Plast Reconstr Surg 57: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Speer D, Chvapil M, Volz R, Holmes M (1979) Enhancement of healing in osteochondral defects by collagen implantation. Clin Orthop Rel Res 144: 326–335

    Google Scholar 

  • Tippett J (1991) Articular cartilage drilling and osteotomy. In: JB McGinty et al. (eds) Osteoarthritis of the knee. Operative arthroscopy. Raven Press, New York, pp 325–339

    Google Scholar 

  • Vacanti C, Kim W, Upton J, Schloo G, Vacanti J (1993) Tissue engineered composites of bone and cartilage using synthetic polymers seeded with two cell types. 39th ORS meeting, San Francisco, p 276

    Google Scholar 

  • Weadock K, Miller E, Bellincampi L, Zawadsky J (1995) Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mat Res 29: 1373–1379

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Nehrer, S., Spector, M. (2000). Tissue Engineering in Cartilage Repair: In Vitro and In Vivo Experiments on Cell-Seeded Collagen Matrices. In: Grifka, J., Ogilvie-Harris, D.J. (eds) Osteoarthritis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87752-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87752-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87754-4

  • Online ISBN: 978-3-642-87752-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics