Skip to main content

Phasic Effects of Hormones in the Avian Brain During Behavioural Development

  • Conference paper
Neurobiology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Steroid hormones have been implicated in the sexual differentiation of behaviour in both birds and mammals (Beach 1974; Goy and McEwen 1980; Adkins-Regan 1983). Studies of the developing rodent brain, particularly in the rat, suggest that androgens irreversibly “organize” mechanisms of male sexual behaviour by direct action on the brain during a “critical” perinatal period (MacLusky and Naftolin 1981). The neural substrate of sexual behaviour in the male is differentiated in two ways. First, androgens masculinize by enhancement of systems underlying male behaviour and, second, defeminize by suppression of behavioural systems underlying female behaviour (Goy and McEwen 1980). Whether these processes operate independently or as a result of the action of different hormones is still unknown, but evidence has accumulated to support the view that an oestrogen, oestradiol-17ß(E2), formed from testosterone within the brain, is important for the sexual differentiation of male behaviour (Plapinger and McEwen 1978; Olsen 1979; Martini 1982). The mechanisms involved in sexual differentiation of avian behaviour appear at first sight to be the reverse of those in mammals. Oestrogens result in the differentiation (or demasculinization) of behaviour in female Japanese quail during early development, whereas the behaviour of the male develops without hormonal intervention (Adkins 1975; Hutchison RE 1978; Adkins-Regan 1983; Schumacher and Balthazart 1983). The generalization has been made that behavioural mechanisms of the heterogametic sex (female in birds, male in mammals) require the differentiating effects of steroids, the homogametic sex is “neutral” (Adkins 1975). However, this has been questioned with respect to birds (Konishi and Gumey 1982), because song is differentiated by early hormone action in the male of at least one avian species, the zebra finch (Poephila guttata).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins EK (1975) Hormonal basis of sexual differentiation in the Japanese quail. J Comp Physiol Psychol 89:61–71

    Article  PubMed  CAS  Google Scholar 

  • Adkins-Regan E (1983) Sex steroids and the differentiation and activation of avian reproductive behaviour. In: Balthazart E, Prove E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 218–230

    Chapter  Google Scholar 

  • Arnold AP (1980) Effects of androgens on volumes of sexually dimorphic brain regions in the zebra finch. Brain Res 185:441–444

    Article  PubMed  CAS  Google Scholar 

  • Arnold AP, Gorski RA (1984) Gonadal steroid induction of structural sex differences in the central nervous system. Annu Rev Neurosci 7:413–442

    Article  PubMed  CAS  Google Scholar 

  • Arnold AP, Saltiel A (1979) Sexual differentiation in pattern of hormone accumulation in the brain of a songbird. Science (Wash DC) 205:702–705

    Article  CAS  Google Scholar 

  • Balthazart J, Hirschberg D (1979) Testosterone metabolism and sexual behavior in the chick. Horm Behav 12:253–263

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M (1983) Testosterone metabolism and sexual differentiation in quail. In: Balthazart J, Prove E, Gilles R (eds) Hormones and higher vertebrates. Springer, Berlin Heidelberg New York, pp 261–274

    Chapter  Google Scholar 

  • Balthazart J, Schumacher M, Malacarne G (1984) Relative potencies of testosterone and 5a-dihydro- testosterone on crowing and cloacal gland growth in the Japanese quail (Coturnix coturnix japonica). J Endocrinol 100:19–23

    Article  PubMed  CAS  Google Scholar 

  • Beach FA (1974) Behavioral endocrinology and the study of reproduction. Biol Reprod 10:2–18

    Article  PubMed  CAS  Google Scholar 

  • Böhner J (1983) Song learning in the zebra finch Taeniopygia guttata: selectivity in the choice of tutor and accuracy of song copies. Anim Behav 31:231–237

    Article  Google Scholar 

  • Bottjer SW, Arnold AP (1984, in press) The ontogeny of vocal learning in songbirds. In: Blass E (ed) Developmental processes in psychobiology and neurobiology. Plenum, New York

    Google Scholar 

  • Bottjer SW, Glaessner SL, Arnold AP (1984) Development of the neural network controlling song behavior in zebra finches. Soc Neurosci Abstracts, vol 10

    Google Scholar 

  • Callard GV, Petro Z, Ryan KJ (1978) Phylogenetic distribution of aromatase and other androgen- converting enzymes in the central nervous system. Endocrinology 103:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Gorski RA (1984) Critical role for the medial preoptic area in the sexual differentiation of the brain. In: deVries GJ, de Bruin JPC, Uylings HBM, Comer MA (eds) Sex differences in the brain. The relation between structure and function. Prog Brain Res 61:129–146. Elsevier, Amsterdam

    Google Scholar 

  • Goy RW, McEwen BS (1980) Sexual differentiation of the brain. MIT Press, Cambridge

    Google Scholar 

  • Gurney ME (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–873

    Google Scholar 

  • Gumey ME (1982) Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Res 231:153–172

    Article  Google Scholar 

  • Gumey ME, Konishi M (1980) Hormone induced sexual differentiation of brain and behaviour in zebra finches. Science (Wash DC) 208:1380–1382

    Article  Google Scholar 

  • Güttinger HR, Prove E, Weichel K, Pesch A (1984) Kurzberichte aus der laufenden Forschung. J Ornithol 125:245–247

    Article  Google Scholar 

  • Hutchison JB, Schumacher M (in preparation) Localization and partial characterization of testosterone metabolizing enzymes in the avian brain during early development

    Google Scholar 

  • Hutchison JB, Steimer T (1981) Brain 5/3-reductase: a correlate of behavioral sensitivity to androgen. Science (Wash DC) 213:244–246

    Article  CAS  Google Scholar 

  • Hutchison JB, Steimer T (1983) Hormone-mediated behavioural transitions: a role for brain aromatase. In: Balthazart J, Prove E, Gilles R (eds) Hormones and behavior in higher vertebrates. Springer, Berlin Heidelberg New York, pp 261–274

    Chapter  Google Scholar 

  • Hutchison JB, Steimer T (1984) Androgen metabolism in the brain: behavioural correlates. In: de Vries GJ, de Bruin JPG, Uylings HBM, Corner MA (eds) Sex differences in the brain. The relation between structure and function. Elsevier, Amsterdam

    Google Scholar 

  • Hutchison JB, Steimer T (1984) Prog Brain Res 61:23–51.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JB, Wingfield JC, Hutchison RE (1984) Sex differences in plasma concentrations of steroids during the sensitive period for brain differentiation in the zebra finch. J Endocrinol 103:363–369

    Article  PubMed  CAS  Google Scholar 

  • Hutchison RE (1978) Hormonal differentiation of sexual behavior in Japanese quail. HormBehav 11:363–387

    CAS  Google Scholar 

  • Immelmann K (1962) Beiträge zu einer vergleichenden Biologie australischer Prachtfinken (Sperestidae). Zool Jahrb Abt Syst Dekol Geogr Tierl 90:1–96

    Google Scholar 

  • Konishi M, Akutagawa E (1985) Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch brain. Nature (Lond) 315:145–147

    Article  CAS  Google Scholar 

  • Konishi M, Gurney ME (1982) Sexual differentiation of brain and behavior. Trends Neurosci 5: 20–23

    Article  Google Scholar 

  • MacLusky NJ, Naftolin F (1981) Sexual differentiation of the central nervous system. Science (Wash DC) 211:1294–1303

    Article  CAS  Google Scholar 

  • Martini L (1982) The 5a-reduction of testosterone in the neuroendocrine structures. Biochemical and biophysical implications. Endocr Rev 3:1–25

    Article  PubMed  CAS  Google Scholar 

  • Massa R (1980) The role of androgens in male birds’ reproduction. In: Delvio G, Brächet J (eds) Steroids and their mechanism of action in the nonmammalian vertebrates. Raven, New York, pp 148–159

    Google Scholar 

  • Massa R, Sharp J (1981) Conversion of testosterone to 5)3-reductase metabolites in the neuro-endocrine tissues of the maturing cockerel. J Endocrinol 88:263–269

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1983) Gonadal steroid influence on brain development and sexual differentiation. In: Greep RO (ed) Reproductive physiology IV. International review of physiology. University Park Press, Baltimore, pp 99–145

    Google Scholar 

  • Morris D (1954) The reproductive behaviour of the zebra finch (Poephilia guttata) with special reference to pseudofemale behaviour and displacement activities. Behaviour 6:271–322

    Article  Google Scholar 

  • Naftolin F, Ryan KJ, Davies IJ, Reddy W, Flores F, Petro D, Kuhn M, White RJ, Takaoka Y, Wolin L (1975) The formation of estrogens by central neuroendocrine tissue. Recent Prog Horm Res 31:295–316

    PubMed  CAS  Google Scholar 

  • Nordeen KW, Nordeen EJ, Arnold AP (1984) Estrogen masculinizes the pattern of androgen accumulation in the brain of a songbird. Soc Neurosci Abstracts, vol 10:454

    Google Scholar 

  • Nottebohm F (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res 189:429–436

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the song bird brain. Science (Wash DC) 194:211–213

    Article  CAS  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary (Serinus canari- usj. J Comp Neurol 165:457–486

    Article  PubMed  CAS  Google Scholar 

  • Olsen KL (1979) Androgen insensitive rats are defeminized by their testes. Nature (Lond) 279: 238–239

    Article  CAS  Google Scholar 

  • Plapinger L, McEwen BS (1978) Gonadal steroid and brain interaction in sexual differentiation. In: Hutchison JB (ed) Biological determinants of sexual behaviour. Wiley, Chichester, pp 153–219

    Google Scholar 

  • Pohl-Apel G, Sossinka R (1982) Männchentypischer Gesang bei weiblichen Zebrafinken (Taeniopy- giaguttata castenotis). J Ornithol 123:211–214

    Article  Google Scholar 

  • Pohl-Apel G, Sossinka R (1984) Hormonal determination of song capacity in females of the zebra finch: critical phase of treatment. Z Tierpsychol 64:330–336

    Article  Google Scholar 

  • Price PH (1979) Developmental determinants of structure in zebra finch song. J Comp Physiol Psychol 93:26–277

    Article  Google Scholar 

  • Prove E (1983) Hormonal correlates of behavioural development in male zebra finches. In: Baltha- zart J, Prove E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 368–374

    Chapter  Google Scholar 

  • Reddy WR, Naftolin F, Ryan KJ (1974) Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rat Endocrinology 94:117–121

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Balthazart J (1983a) Effects of castration on postnatal differentiation in the Japanese quail (Cotumix coturnix japonica). IRCS Med Sci Kibr Compend 11:102–103

    Google Scholar 

  • Schumacher M, Balthazart J (1983b) Testosterone metaboUsm in discrete areas of the hypothälamus and adjacent brain regions of male and female Japanese quail (Cotumix cotumix japonica). Brain Res 278:337–340

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Hutchison JB (in preparation) Testosterone induces hypothalamic aromatase during early development in quail

    Google Scholar 

  • Selmanoff MK, Brodkin LD, Weiner RI, Siiteri PK (1977) Aromatization and 5a-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology 101:841–848

    Article  PubMed  CAS  Google Scholar 

  • Siegel LI, Fox TO, Konishi M (1983) Androgen and estrogen receptors in zebra fmch brain. Soc Neurosci Abstr 9:1078

    Google Scholar 

  • Sucox A (1979) The pair bonding in the zebra fmch. PhD Thesis Newcastle-upon-Tyne

    Google Scholar 

  • Sossinka R, Böhner J (1980) Song types in the zebra fmch (Poephilia guttata castenotis). Z Tier- psychol 53:123–132

    Google Scholar 

  • Steimer T, Hutchison JB (1980) Aromatization of testosterone within a discrete hypothalamic area associated with the behavioural action of androgen in the male dove. Brain Res 192:586–591

    Article  PubMed  CAS  Google Scholar 

  • Steimer T, Hutchison JB (1981a) Androgen increases formation of behaviourally effective androgen on the dove brain. Nature (Lond) 292:345–347

    Article  CAS  Google Scholar 

  • Steimer T, Hutchison JB (1981b) Metabolic control of the behavioural action of androgens in the dove brain: testosterone inactivation by 5i3-reduction. Brain Res 209:189–204

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Nakamura T, Fujioka K (1979) Production and secretion of sex steroid hormones by the testes, the ovary and the adrenal glands of embryonic and young chickens (Gallus domesticus). Gen Comp Endocrinol 39:26–33

    Article  PubMed  CAS  Google Scholar 

  • Toran-Allerand CD (1984) On the genesis of sexual differentiation of the central nervous system: morphogenetic consequences of steroidal exposure and possible role of alpha-fetoprotein. In: de Vries GJ, de Bruin JPC, Uylings HBM, Corner MA (eds) Sex differences in the brain. The relation between structure and function. Prog Brain Res 61:63–98. Elsevier, Amsterdam

    Google Scholar 

  • Vito CC, Fox TO (1979) Embryonic rodent brain contains estrogen receptors. Science (Wash DC) 204:517–519

    Article  CAS  Google Scholar 

  • Wingfield JC, Famer DS (1975) The determination of five steroids in avian plasma by radioimmunoassay and competitive protein binding. Steroids 26:311–327

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC, Smith JP, Earner DS (1980) Changes in plasma levels of luteinizing hormone, steroid and thyroid hormones during the post-fledgling development of white-crowned sparrows, Zono- trichia leucophrys. Gen Comp Endocrinol 41:372–377

    Article  PubMed  CAS  Google Scholar 

  • Woods JE, Erton LH (1978) Plasma testosterone levels in the chick embryo. Gen Comp Endocrinol 27:543–547

    Article  Google Scholar 

  • Yahr P (1985) See this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hutchison, J.B., Hutchison, R.E. (1985). Phasic Effects of Hormones in the Avian Brain During Behavioural Development. In: Gilles, R., Balthazart, J. (eds) Neurobiology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87599-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87599-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87601-1

  • Online ISBN: 978-3-642-87599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics