Skip to main content

Searching for Neural Correlates of Sexual Differentiation in a Heterogeneous Tissue

  • Conference paper
Neurobiology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Nearly 20 years have passed since the hypothalamus-preoptic area (HPOA) was identified as a target tissue mediating the effects of gonadal steroids on male and female sexual behaviour (Davidson and Bloch 1969; Eisenfeld and Axelrod 1965; Lisk 1962, 1967; Harris and Michael 1964). Since then our knowledge of how HPOA cells accumulate and metabolize steroids has rapidly progressed. We know, for example, that HPOA cells that respond to testosterone (T) often convert it first to oestradiol (OE2) and/or di- hydrotestosterone (DHT; Luttge 1979, Martini 1982). These metabolites then bind to intracellular receptors. In this regard, T-sensitive cells in the HPOA resemble T-sensitive cells in the male reproductive tract. In females, HPOA cells that respond to progesterone (P) resemble P-sensitive cells in the female reproductive tract in that they synthesize most of their P receptors only after they have been exposed to OE2 (Blaustein and Brown, this Vol.; Moguilewski and Raynaud 1979a,b; MacLusky and McEwen 1978, 1980). The receptors themselves are similar in the HPOA and peripheral targets (Barley et al. 1975; Feder et al. 1979; Moguilewsky and Raynaud 1979a), and in both tissues, the steroid eventually binds to acceptor sites on the chromatin (Fox and Johnston 1974; Whalen and Olsen 1978). Moreover, these processes are similar in adults and neonates (MacLusky and Naftolin 1981). These observations have encouraged the view that steroids activate mating behaviour in adulthood, and sexually differentiate the HPOA during early development, in the same way that they modify cellular functions in other parts of the body, i.e., by modifying synthesis of messenger RNA and protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins-Regan E (1981) Early organizational effects of hormones: an evolutionary perspective. In: Adler NT (ed) Neuroendocrinology of reproduction physiology and behavior. Plenum, New York London, p 159

    Google Scholar 

  • Alberts B, Bray D, Lewis J, Roff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Arendash GW, Gorski RA (1983) Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Res Bull 10:147–154

    PubMed  CAS  Google Scholar 

  • Atz JW (1964) Intersexuality in fishes. In: Armstrong CN, Marshall AJ (eds) Intersexuality in vertebrates including man. Academic, New York, p 145

    Google Scholar 

  • Ayoub DM, Greenough WT, Juraska JM (1983) Sex differences in dendritic structure in the preoptic area of the juvenile macaque monkey brain. Science (Wash DC) 219:197–198

    CAS  Google Scholar 

  • Barley J, Ginsburg M, Greenstein BD, MacLusky NJ, Thomas PJ (1975) An androgen receptor in rat brain and pituitary. Brain Res 100:383–393

    PubMed  CAS  Google Scholar 

  • Baum MJ (1979) Differentiation of coital behavior in mammals: a comparative analysis. Neurosci Biobehav Rev 3:265–284

    PubMed  CAS  Google Scholar 

  • Baum MJ, Gallagher CA (1981) Increasing dosages of estradiol benzoate activate equivalent degrees of sexual receptivity in gonadectomized male and female ferrets. Physiol Behav 26:751–753

    PubMed  CAS  Google Scholar 

  • Beach FA (1976) Sexual attractivity, proceptivity, and receptivity in female mammals. Horm Behav 7:105–138

    PubMed  CAS  Google Scholar 

  • Beach FA, Buehler MG (1977) Male rats with inherited insensitivity to androgen show reduced sexual behavior. Endocrinology 100:197–200

    PubMed  CAS  Google Scholar 

  • Bishop W, Kalra PS, Fawcett CP, Krulich L, McCann SM (1972) The effects of hypothalamic lesions on the release of gonadotropins and prolactin in response to estrogen and progesterone treatment in female rats. Endocrinology 91:1404–1410

    PubMed  CAS  Google Scholar 

  • Bleier R, Byne W, Siggelkow I (1982) Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in guinea pig, rat, hamster, and mouse. J Comp Neurol 212: 118–130

    PubMed  CAS  Google Scholar 

  • Breedlove SM, Arnold AP (1981) Sexually dimorphic motor nucleus in the rat lumbar spinal cord: response to adult hormone manipulation, absence in androgen-insensitive rats. Brain Res 225: 297–307

    PubMed  CAS  Google Scholar 

  • Brown RE (1977) Odor preference and urine-marking scales in male and female rats: effects of gonadectomy and sexual experience on responses to conspecific odors. J Comp Physiol Psychol 91:1190–1206

    Google Scholar 

  • Brown RE (1978) Hormonal control of odor preferences and urine-marking in male and female rats. Physiol Behav 20:21–24

    PubMed  CAS  Google Scholar 

  • Christensen LW, Gorski RA (1978) Independent masculinization of neuroendocrine systems by intracerebral implants of testosterone or estradiol in the neonatal female rat. Brain Res 146: 325–340

    PubMed  CAS  Google Scholar 

  • Gemens LG, Gladue BA, Coniglio LP (1978) Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats. Horm Behav 10:40–53

    Google Scholar 

  • Cohen RS, Pfaff DW (1981) Ultrastructure of neurons in the ventromedial nucleus of the hypothalamus in ovariectomized rats with or without estrogen treatment. Cell Tissue Res 217:451–470

    PubMed  CAS  Google Scholar 

  • Commins D, Yahr P (1984a) Adult testosterone levels influence to the morphology of a sexually dimorphic area in the Mongolian gerbil brain. J Comp Neurol 224:132–140

    PubMed  CAS  Google Scholar 

  • Commins D, Yahr P (1984b) Acetylcholinesterase activity in the sexually dimorphic area of the gerbil brain: sex differences and influences of adult gonadal steroids. J Comp Neurol 224:123–131

    PubMed  CAS  Google Scholar 

  • Commins D, Yahr P (1984c) Lesions of the sexually dimorphic area disrupt mating and marking in male gerbils. Brain Res Bull 13:185–193

    PubMed  CAS  Google Scholar 

  • Commins D, Yahr P (1985) Autoradiographic localization of estrogen and androgen receptors in the sexually dimorphic area and other regions of the gerbil brain. J Comp Neurol 231:473–489

    PubMed  CAS  Google Scholar 

  • Corballis MC, Morgan JJ (1978) On the biological basis of human laterality I. Evidence for a maturational left-right gradient Behav Brain Sci 2:261–336

    Google Scholar 

  • Davidson JM, Bloch GJ(1969) Neuroendocrine aspects of male reproduction. Biol Reprod 1:67–92

    Google Scholar 

  • Davis PG, Barfield RJ (1979a) Activation of masculine sexual behavior by intracranial estradiol benzoate implants in male rats. Neuroendocrinology 28:217–227

    PubMed  CAS  Google Scholar 

  • Davis PG, Barfield RJ (1979b) Activation of feminine sexual behavior in castrated male rats by intrahypothalamic implants of estradiol benzoate. Neuroendocrinology 28:228–233

    PubMed  CAS  Google Scholar 

  • Davis PG, Chaptal CV, McEwen BS (1979a) Independence of the differentiation of masculine and feminine sexual behavior in rats. Horm Behav 12:12–19

    PubMed  CAS  Google Scholar 

  • Davis PG, McEwen BS, Pfaff DW (1979b) Localized behavioral effects of tritiated estradiol implants in the ventromedial hypothalamus of female rats. Endocrinology 104:898–903

    PubMed  CAS  Google Scholar 

  • DeBold JF (1978) Modification of nuclear retention of [H] estradiol by cells of the hypothalamus as a function of early hormone experience. Brain Res 159:416–420

    PubMed  CAS  Google Scholar 

  • DeBold JF, Whalen RE (1975) Differential sensitivity of mounting and lordosis control systems to early androgen treatment in male and female hamsters. Horm Behav 6:197–209

    PubMed  CAS  Google Scholar 

  • DeVoogd T, Nottebohm F (1981) Gonadal hormones induce dendritic growth in the adult avian brain. Science (Wash DC) 214:202–204

    CAS  Google Scholar 

  • Dohler KD, Coquelin A, Davis F, Hines M, Shryne JE, Gorski RA (1982) Differentiation of the sexually-dimorphic nucleus in the preoptic area of the rat brain is determined by the perinatal hormone environment. Neurosci Lett 33:295–298

    PubMed  CAS  Google Scholar 

  • Eisenfeld AJ, Axelrod J (1965) Selectivity of estrogen distribution in tissues. J Pharmacol Exp Ther 150:469–475

    PubMed  CAS  Google Scholar 

  • Feder HH (1981) Hormonal actions on the sexual differentiation of the genitalia and gonadotropin- regulating systems. In: Adler NT (ed) Neuroendocrinology of reproduction: physiology and behavior. Plenum, New York, p 89

    Google Scholar 

  • Feder HH, Landau IT, Walker WA (1979) Anatomical and biochemical substrates of the actions of estrogens and antiestrogens on brain tissues that regulate female sex behavior of rodents. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, p 317

    Google Scholar 

  • Fox TO (1975) Androgen- and estrogen-binding macromolecules in developing mouse brain: biochemical and genetic evidence. Proc Nat Acad Sci USA 72:4303–4307

    PubMed  CAS  Google Scholar 

  • Fox TO, Johnston C (1974) Estradiol receptors from mouse brain and uterus: binding to DNA. Brain Res 77:330–336

    PubMed  CAS  Google Scholar 

  • Gentry RT, Wade GN (1976) Sex differences in sensitivity of food intake, body weight, and running- wheel activity to ovarian steroids in rats. J Comp Physiol Psychol 90:747–754

    PubMed  CAS  Google Scholar 

  • Gerendai I, Rotsztejn W, Marchetti B, Kordon C, Scapagini U (1978) Unilateral ovariectomy-induced luteinizing hormone-releasing hormone content changes in the two halves of the mediobasal hypothalamus. Neurosci Lett 9:333–336

    PubMed  CAS  Google Scholar 

  • Goldfoot DA, Feder HH, Goy RW (1969) Development of bisexuality in the male rat treated neonatally with androstenedione. J Comp Physiol Psychol 67:41–45

    PubMed  CAS  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Nat Acad Sei USA 80:2390–2394

    CAS  Google Scholar 

  • Goodman RL (1978) The site of the positive feedback action of estradiol in the rat. Endocrinology 102:151–159

    PubMed  CAS  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat. Brain Res 148:333–346

    PubMed  CAS  Google Scholar 

  • Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam M (1980) Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193:529–539

    PubMed  CAS  Google Scholar 

  • Goy RW, Goldfoot DA (1975) Neuroendocrinology: animal models and problems of human sexuality. Arch Sex Behav 4:405–420

    PubMed  CAS  Google Scholar 

  • Goy RW, McEwen BS (1980) Sexual differentiation of the brain. MIT Press, Cambridge

    Google Scholar 

  • Grant LD, Bissette G, Nemeroff CB (1984) Distribution of peptides in the central nervous system. In: Nemeroff CB, Dunn AJ (eds) Peptides, hormones, and behavior. Spectrum, Jamaica, p 37

    Google Scholar 

  • Greenough WT, Carter CS, Steerman C, DeVoogd TJ (1977) Sex differences in dendritic patterns in hamster preoptic area. Brain Res 126:63–72

    PubMed  CAS  Google Scholar 

  • Griffiths EC, Hooper KC, Jeffcoate SL, Holland DT (1975) The effects of gonadectomy and gonadal steroids on the activity of hypothalamic peptidases inactivating luteinizing hormone-releasing hormone (LH-RH). Brain Res 88:384–388

    PubMed  CAS  Google Scholar 

  • Harris GW, Michael RP (1964) The activation of sexual behaviour by hypothalamic implants of oestrogen. J Physiol (Lond) 17:275–301

    Google Scholar 

  • Hart BL (1974) Medial preoptic-anterior hypothalamic area and the sociosexual behavior of male dogs: a comparative neuropsychological analysis. J Comp Physiol Psychol 86:328–349

    PubMed  CAS  Google Scholar 

  • Hart BL, Voith VL (1978) Changes in urine spraying, feeding, and sleep behavior of cats following medial pre optic-anterior hypothalamic lesions. Brain Res 145:406–409

    PubMed  CAS  Google Scholar 

  • Hayashi S (1976) Sterilization of female rats by neonatal placement of estradiol micropellets in anterior hypothalamus. Endocrinol J 23:55–60

    CAS  Google Scholar 

  • Heimer L, Larsson K (1966/67) Impairment of mating behavior in male rats following lesions in the pre optic-anterior hypothalamic continuum. Brain Res 3:248–263

    Google Scholar 

  • Hlinak Z, Madlafousek J, Mohapelova A (1979) Initiation of copulatory behavior in castrated male rats injected with critically adjusted doses of testosterone. Horm Behav 13:9–20

    PubMed  CAS  Google Scholar 

  • Kalra PS, McCann SM (1975) The stimulatory effect on gonadotropin release of implants of estradiol or progesterone in certain sites in the central nervous system. Neuroendocrinology 19: 289–302

    PubMed  CAS  Google Scholar 

  • Kelley DB, Pfaff DW (1978) Generalizations from comparative studies on neuroanatomical and endocrine mechanisms of sexual behaviour. In: Hutchison JB (ed) Biological determinants of sexual behaviour. Wiley, Chichester, p 225

    Google Scholar 

  • King WJ, Green GL (1984) Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature (Lond) 307:745–747

    CAS  Google Scholar 

  • LaVelle A (1951) Nucleolar changes and development of Nissl substance in the cerebral cortex of fetal guinea pigs. J Comp Neurol 94:453–467

    PubMed  CAS  Google Scholar 

  • LaVelle A (1956) Nucleolar and Nissl substance development in nerve cells. J Comp Neurol 104: 175–201

    PubMed  CAS  Google Scholar 

  • Lieberburg I, McEwen BS (1977) Brain cell nuclear retention of testosterone metabolites, 5a-di-hydrotestoster one and estradiol-17/3, in adult male rats. Endocrinology 100:588–597

    PubMed  CAS  Google Scholar 

  • Lieberburg I, MacLusky N, McEwen BS (1980) Cytoplasmic and nuclear estradiol-l7/3 binding in male and female rat brain: regional distribution, temporal aspects and metabolism. Brain Res 193:487–503

    PubMed  CAS  Google Scholar 

  • Lisk RD (1962) Diencephalic placement of estradiol and sexual receptivity in the female rat. Am J Physiol 203:493–496

    PubMed  CAS  Google Scholar 

  • Lisk RD (1967) Neural localization for androgen activation of copulatory behavior in the male rat. Endocrinology 80:754–761

    PubMed  CAS  Google Scholar 

  • Luine VN, McEwen BS (1983) Sex differences in cholinergic enzymes of diagonal band nuclei in the rat preoptic area. Neuroendocrinology 36:475–482

    PubMed  CAS  Google Scholar 

  • Luine VN, Rhodes JC (1983) Gonadal hormone regulation of MAO and other enzymes in hypothalamic areas. Neuroendocrinology 36:235–241

    PubMed  CAS  Google Scholar 

  • Luine VN, Khylchevskaya RI, McEwen BS (1974) Oestrogen effects on brain and pituitary enzyme activities. J Neurochem 23:925–934

    PubMed  CAS  Google Scholar 

  • Luine VN, McEwen BS, Black IB (1977) Effect of 17/3-estradiol on hypothalamic tyrosine hydroxylase activity. Brain Res 120:188–192

    PubMed  CAS  Google Scholar 

  • Luttge WG (1979) Endocrine control of mammalian male sexual behavior: an analysis of the potential role of testosterone metabolites. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, p 341

    Google Scholar 

  • MacLusky NJ, McEwen BS (1978) Oestrogen modulates progestin receptor concentrations in some brain regions and not others. Nature (Lond) 274:276–277

    CAS  Google Scholar 

  • MacLusky NJ, McEwen BS (1980) Progestin receptors in rat brain: distribution and properties of cytoplasmic progestin binding sites. Endocrinology 106:192–202

    PubMed  CAS  Google Scholar 

  • MacLusky NJ, Naftolin F (1981) Sexual differentiation of the central nervous system. Science (Wash DC) 211:1294–1303

    CAS  Google Scholar 

  • Madlafousek J, Hlinak Z, Beran J (1976) Decline of sexual behavior in castrated male rats: effects of female precopulatory behavior. Horm Behav 7:245–252

    PubMed  CAS  Google Scholar 

  • Marrone BL, Feder HH (1977) Characteristics of (H)estrogen and H)progestin uptake and effects of progesterone on (H)estrogen uptake in brain, anterior pituitary and peripheral tissues of male and female guinea pigs. Biol Reprod 17:42–57

    PubMed  CAS  Google Scholar 

  • Martini L (1982) The 5a-reduction of testosterone in the neuroendocrine structures. Biochemical and physiological implications. Endocr Rev 3:1–15

    PubMed  CAS  Google Scholar 

  • Mathews D, Edwards DA (1977) Involvement of the ventromedial and anterior hypothalamic nuclei in the hormonal induction of receptivity in the female rat. Physiol Behav 19:319–326

    PubMed  CAS  Google Scholar 

  • Matsumoto A, Arai Y (1983) Sex difference in volume of the ventromedial nucleus of the hypothalamus in the rat. Endocrinol Jpn 30:277–280

    PubMed  CAS  Google Scholar 

  • Maurer RA, Woolley DE (1974) Demonstration of nuclear H-estradiol binding in hypothalamus and amygdala of female, androgenized-female and male rats. Neuroendocrinology 16:137–147

    PubMed  CAS  Google Scholar 

  • McEwen BS (1981) Neural gonadal steroid actions. Science (Wash DC) 211:1303–1311

    CAS  Google Scholar 

  • Meisel RL, Ward IL (1981) Fetal female rats are masculinized by male httermates located caudally in the uterus. Science (Wash DC) 213:239–242

    CAS  Google Scholar 

  • Moguilewsky M, Raynaud JP (1979a) Estrogen-sensitive progestin-binding sites in the female rat brain and pituitary. Brain Res 164:165–175

    PubMed  CAS  Google Scholar 

  • Moguilewsky M, Raynaud JP (1979b) The relevance of hypothalamic and hypophyseal progestin receptor regulation in the induction and inhibition of sexual behavior in the female rat. Endocrinology 105:516–522

    PubMed  CAS  Google Scholar 

  • Morrell JI, Pfaff DW (1982) Characterization of estrogen-concentrating hypothalamic neurons by their anoxal projections. Science (Wash DC) 217:1273–1276

    CAS  Google Scholar 

  • Nance DM, Moger WH (1982) Ipsilateral hypothalamic deafferentiation blocks the increase in serum FSH foUowing hemicastration. Brain Res Bull 8:299–302

    PubMed  CAS  Google Scholar 

  • Nance DM, Christensen LW, Shryne JE, Gorski RA (1977) Modifications in gonadotropin control and reproductive behavior in the female rat by hypothalamic and preoptic lesions. Brain Res Bull 2:307–312

    PubMed  CAS  Google Scholar 

  • Nance DM, White JP, Moger WH (1983) Neural regulation of the ovary: evidence for hypothalamic asymmetry in endocrine control. Brain Res Bull 10:353–355

    PubMed  CAS  Google Scholar 

  • Neill JD (1972) Sexual differences in the hypothalamic regulation of prolactin secretion. Endocrinology 90:1154–1159

    PubMed  CAS  Google Scholar 

  • Nordeen EJ, Yahr P (1982) Hemispheric asymmetries in the behavioral and hormonal effects of sexually differentiating mammalian brain. Science (Wash DC) 218:391–394

    CAS  Google Scholar 

  • Nordeen EJ, Yahr P (1983) A regional analysis of estrogen binding to hypothalamic cell neclei in relation to masculinization and defeminization. J Neurose 3:933–941

    CAS  Google Scholar 

  • Nottebohm F (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res 189:429–436

    PubMed  CAS  Google Scholar 

  • Nottebohm F (1981) A brain for all seasons: cyclical anatomical changes in song control neclei of the canary brain. Science (Wash DC) 214:1368–1370

    CAS  Google Scholar 

  • Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science (Wash DC) 194:211–213

    CAS  Google Scholar 

  • Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91:146–164

    PubMed  CAS  Google Scholar 

  • Ogren L, Vertes M, Woolley D (1976) In vivo nuclear H-estradiol binding in brain areas of the rat: reduction by endogenous and exogenous androgens. Neuroendocrinology 21:350–365

    PubMed  CAS  Google Scholar 

  • Olsen KL (1979) Androgen-sensitive rats are defeminized by their testes. Nature (Lond) 279:238–239

    CAS  Google Scholar 

  • Olsen KL, Whalen RE (1980) Sexual differentiation of the brain: effects on mating behavior and [H] estradiol binding by hypothalamic chromatin in rats. Biol Reprod 22:1068–1072

    PubMed  CAS  Google Scholar 

  • Olsen KL, Whalen RE (1981) Hormonal control of the development of sexual behavior in androgen- insensitive (tfm) rats. Physiol Behav 27:883–886

    PubMed  CAS  Google Scholar 

  • Palay SL, Palade GE (1955) The fine structure of neurons. J Biochem Biophys Cytol 1:69–88

    CAS  Google Scholar 

  • Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–450

    PubMed  CAS  Google Scholar 

  • Pfaff DW (1970) Nature of sex hormone effects on rat sex behavior: specificity of effects and individual patterns of response. J Comp Physiol Psychol 73:349–358

    PubMed  CAS  Google Scholar 

  • Pfaff DW, Zigmond RE (1971) Neonatal androgen effects on sexual and non-sexual behavior of adult rats tested under various hormone regimes. Neuroendocrinology 7:129–145

    PubMed  CAS  Google Scholar 

  • Price EO (1975) Hormonal control of urine-marking in wild and domestic Norway rats. Horm Behav 6:393–397

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Davis PG, McEwen BS (1980a) Anisomycin inhibits the activation of sexual behavior by estradiol and progesterone. Brain Res 194:548–555

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Degroff V, Luine VN, McEwen BS (1980b) Estradiol11 ß increases the number of muscarinic receptors in hypothalamic nuclei. Brain Res 198:239–243

    PubMed  CAS  Google Scholar 

  • Rainbow TC, Parsons B, McEwen BS (1982) Sex differences in rat brain oestrogen and progestin receptors. Nature (Lond) 300:648–649

    CAS  Google Scholar 

  • Raisman G, Field PM (1971) Sexual dimorphism in the preoptic area of the rat. Science (Wash DC) 173:731–733

    CAS  Google Scholar 

  • Raisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area and its dependence on neonatal androgen. Brain Res 54:1–29

    PubMed  CAS  Google Scholar 

  • Rubin BS, Barfield RJ (1980) Priming of estrous responsiveness by implants of H/J-estradiol in the ventromedial hypothalamic nucleus of female rats. Endocrinology 106:504–509

    PubMed  CAS  Google Scholar 

  • Rubin BS, Barfield RJ (1983a) Progesterone in the ventromedial hypothalamus facilitates estrous behavior in ovariectomized, estrogen-primed rats. Endocrinology 113:797–804

    PubMed  CAS  Google Scholar 

  • Rubin BS, Barfield RJ (1983b) Induction of estrous behavior in ovariectomized rats by sequential replacement of estrogen and progesterone to the ventromedial hypothalamus. Neuroendocrinology 37:218–224

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J Comp Neurol 205:260–272

    PubMed  CAS  Google Scholar 

  • Scouten CW, Burrell L, Palmer T, Cegavske CE (1980) Lateral projections of the medial preoptic area are necessary for androgenic influence on urine marking and copulation in rats. Physiol Behav 25:237–241

    PubMed  CAS  Google Scholar 

  • Stern JJ (1969) Neonatal castration, androstenedione, and the mating behavior of the male rat. J Comp Physiol Psychol 64:608–612

    Google Scholar 

  • Swanson LW (1977) Immunohistochemical evidence for a neurophysin-containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res 128:346–353

    PubMed  CAS  Google Scholar 

  • Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: cytoarchi- tectonic subdivisions and the organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labelling methods. J Comp Neurol 194:555–570

    PubMed  CAS  Google Scholar 

  • Swanson LW, McKellar S (1979) The distribution of oxytocin- and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188:87–106

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6:269–324

    PubMed  CAS  Google Scholar 

  • Wade GN, Zucker I (1970) Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants. J Comp Physiol Psychol 72:328–336

    PubMed  CAS  Google Scholar 

  • Wallis CJ, Luttge WG (1980) Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat brain. J Neurochem 34:609–613

    PubMed  CAS  Google Scholar 

  • Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccuppied oestrogen receptors. Nature (Lond) 307:747–749

    CAS  Google Scholar 

  • Whalen RE (1974) Sexual differentiation: models, methods, and mechanisms. In: Friedman RC, Richart RM, Vande Wiele RL (eds) Sex differences in behavior. Wiley, New York, p 467

    Google Scholar 

  • Whalen RE, Massicci J (1975) Subcellular analysis of the accumulation of estrogen by the brain of male and female rats. Brain Res 89:255–264

    PubMed  CAS  Google Scholar 

  • Whalen RE, Olsen KL (1978) Chromatin binding of estradiol in the hypothalamus and cortex of male and female rats. Brain Res 152:121–131

    PubMed  CAS  Google Scholar 

  • Whalen RE, Luttge WG, Gorzalka BB (1971) Neonatal androgenization and the development of estrogen responsivity in male and female rats. Horm Behav 2:83–90

    CAS  Google Scholar 

  • Wüson JD, George FW, Griffin JE (1981) The hormonal control of sexual development. Science (Wash DC) 211:1278–1284

    Google Scholar 

  • Yahr P (1977) Central control of scent marking. In: Muller-Schwarze D, Mozell MM (eds) Chemical signals in vertebrates. Plenum, New York, p 547

    Google Scholar 

  • Yahr P (1983) Hormonal influences on territorial marking behavior. In: Svare BB (ed) Hormones and aggressive behavior. Plenum, New York, p 145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yahr, P. (1985). Searching for Neural Correlates of Sexual Differentiation in a Heterogeneous Tissue. In: Gilles, R., Balthazart, J. (eds) Neurobiology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87599-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87599-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87601-1

  • Online ISBN: 978-3-642-87599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics