Advertisement

On Fields of Inhibitory Influence in a Neural Network

  • F. Ratliff

Abstract

The aim of the research reported here is to reach an understanding of the complex dynamic behavior of a real neural network in terms of a few simple basic principles. The network is the retina of the compound eye of the horseshoe crab, Limulus. The basic principles are that fields of inhibitory influence surround points of excitation in the retina and that the ultimate response at any particular point is determined by the integration of the opposed excitatory and inhibitory influences at that point.

Keywords

Optic Nerve Receptive Field Horseshoe Crab Inhibitory Influence Inhibitory Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, E. D., and R. Matrrews: The action of light on the eye. Part III. The interaction of retinal neurones. J. Physiol. (Lond.) 65, 273–298 (1928).Google Scholar
  2. Barlow, H. B.: Summation and inhibition in the frog’s retina. J. Physiol. (Lond.) 119, 69–88 (1953).Google Scholar
  3. Barlow, R. B., JR.: Inhibitory fields in the Limulus lateral eye. Thesis, The Rockefeller University 1967.Google Scholar
  4. Barlow, R. B., and W. R. Levick: The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. (Lond.) 178, 477–504 (1965).Google Scholar
  5. Barlow, R. B., and W. R. Levick: Inhibitory fields in the Limulus lateral eye. Thesis, The Rockefeller University 1967.Google Scholar
  6. Von Bekesy, G.: Sensory inhibition. Princeton, N.J.; Princeton University Press 1967.Google Scholar
  7. Bic King, L. A.: Some quantitative studies on retinal ganglion cells. Thesis, The Johns Hopkins University 1965.Google Scholar
  8. Bishop, P. O., and R. W. Ronieck: Discharge patterns of cat retina ganglion cells. Proceedings of the symposium on information processing in sight sensory systems, p. 116 to 127 (P. W. Nye, Ed.). Pasadena, Calif. California Institute of Technology 1965.Google Scholar
  9. Cam Pbell, F. W., and R. W. Gubicsh: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).Google Scholar
  10. Granit, R.: The components of the retinal action potential and their relation to the discharge in the optic nerve. J. Physiol. (Lond.) 77, 207–240 (1933).Google Scholar
  11. Hartline, H. K.: The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).Google Scholar
  12. Hartline, H. K.: The receptive fields of optic nerve fibers. Amer. J. Physiol. 130, 690–699 (1940).Google Scholar
  13. Hartline, H. K., and F. Ratliff: Spatial summation of inhibitory influences in the eye of Limulus, and the mutual interaction of receptor units. J. Gen. Physiol. 41, 1049–1066 (1958).CrossRefGoogle Scholar
  14. Hartline, H. K., and F. Ratliff: Inhibitory interaction of receptor units in the eye of Limulus. J. gen. Physiol. 40, 357–376 (1957).CrossRefGoogle Scholar
  15. Hartline, H. K., and F. Ratliff, and W. H. Miller: Inhibitory interaction in the retina and its significance in vision. Nervous inhibition, p. 241–284 (E. Florey, Ed.) New York: Pergamon Press 1961.Google Scholar
  16. Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  17. Hughes, G. W., and L. Maffei: Retinal ganglion cell response to sinusoidal light stimulation. J. Neurophysiol. (Lond.) 29, 333–352 (1966).Google Scholar
  18. Kelly, D. H.: Flicker thresholds. Proceedings of the symposium on information processing in sight sensory systems, p. 162–176 (P. W. Nye, Ed.). Pasadena, Calif.: California Institute of Technology 1965.Google Scholar
  19. Kuffler, S. W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. (Lond.) 16, 37–68 (1953).Google Scholar
  20. Lange, G. D.: Dynamics of inhibitory interaction in the eye of Limulus. Experimental and theoretical studies. Thesis, The Rockefeller University 1965.Google Scholar
  21. Lange, G. D., H. K. Hartline, and F. Ratliff: The dynamics of lateral inhibition in the compound eye of Limalus. II., The functional organization of the compound eye, p. 425–449 ( C. G. Bernhard, Ed.). Pergamon Press 1966.Google Scholar
  22. Lange, G. D., H. K. Hartline, and F. Ratliff: Inhibitory interaction in the retina: Techniques of experimental and theoretical analysis. Symposium on Advances in Biomedical Computer Applications. Ann. N.Y. Acad. Sci. 128, 955–971 (1966).CrossRefGoogle Scholar
  23. Maturana, H. R., J. Y. Letrvin, W. S. Mcculloch, and W. H. Prrrs Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, (No. 6, Pt. 2), 129–175 (1960).CrossRefGoogle Scholar
  24. Miller, W. H.: Morphology of the ommatidia of the compound eye of Limulus. J. biophys. biochem. Cytol. 3, 421–428 (1957).CrossRefGoogle Scholar
  25. Purple, R. L., and F. A. Dodge: Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spring Harbor Symposia XXX, 529–537 (1965).CrossRefGoogle Scholar
  26. Purple, R. L., and F. A. Dodge: Self inhibition in the eye of Limulus, Functional organization of the compound eye, pp. 451–464 ( C. G. Bernhard, Ed.). Pergamon Press 1966.Google Scholar
  27. Ratliff, F.: Inhibitory interaction and the detection and enhancement of contours. Sensory communication, (W.A. Rosenblith, Ed.) p. 183–203. New York: MIT Press and John Wiley and Sons, 1961.Google Scholar
  28. Ratliff, F.: Mach bands: Quantitative studies on neural networks in the retina. San Francisco: Holden-Day, 1965.Google Scholar
  29. Ratliff, F., and H. K. Hartline: Fields of inhibitory influence of single receptor units in the lateral eye of Limules. Science 126, 1234 (1957).CrossRefGoogle Scholar
  30. Ratliff, F., and H. K. Hartline: The responses of Limules optic nerve fibers to patterns of illumination on the receptor mosaic. J. gen. Physiol. 42, 1241–1255 (1959).CrossRefGoogle Scholar
  31. Ratliff, F., and H. K. Hartline, and D. Lange: The dynamics of lateral inhibition in the compound eye of Limules, I., The functional organization of the compound eye, (C. G. Bernhard, Ed.), pp. 399–424. Pergamon Press 1966.Google Scholar
  32. Ratliff, F., and H. K. Hartline, and D. Lange, and W. H. Miller: Spatial and temporal aspects of retinal inhibitory interaction. J. opt. Soc. Amer. 53, 110–120 (1963).CrossRefGoogle Scholar
  33. Ratliff, F., B. W. Knight, and N. Graham: On tuning and amplification by lateral inhibitory networks. In preparation. To be published in: Proc. nat. Acad. Sci. (Wash.) 1968.Google Scholar
  34. Ratliff, F., B. W. Knight, J. Toyoda, and H. K. Hartline: The enhancement of flicker by lateral inhibition. 158, 393–294 (1967).Google Scholar
  35. Ratliff, F., and C. G. Mueller: Synthesis of “On-Off” and “Off” responses in a visual-neural system. Science 126, 840–841 (1957).CrossRefGoogle Scholar
  36. Reichardt, W., G. Mac Ginitie: Zur Theorie der lateralen Inhibition. Kybernetik 1, 155–165 (1962).CrossRefGoogle Scholar
  37. Rodieck, R. W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965).CrossRefGoogle Scholar
  38. Stevens, C. F.: A quantitative theory of neural interactions: Theoretical and experimental investigations. Thesis, The Rockefeller Institute 1964.Google Scholar
  39. Taylor, W. K.: Electrical simulation of some nervous system functional activities. In: Information theory, (C. Cherry, Ed.) pp. 314–328. New York: Academic Press 1956.Google Scholar
  40. Wagner, H. G., E. F. Macnichol Jr., and M. L. Wolbarsht: The response properties of single ganglion cells in the goldfish retina. J. gen. Physiol. 43 (part 2), 45–62 (1960).CrossRefGoogle Scholar
  41. Wagner, H. G., E. F. Macnichol Jr., and M. L. Wolbarsht: Functional basis for “On”-center and “Off”-center receptive fields in the retina. J. opt. Soc. Amer. 53, 66–70 (1963).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1968

Authors and Affiliations

  • F. Ratliff
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations