Skip to main content

Zusammenfassung

Es liegt in der Natur des sprunghaften Fortschreitens der wissenschaftlichen Forschung, daß sich ein Gebiet während längerer Zeiträume nur zögernd entwickelt, um dann ganz unerwartet einen erheblichen Sprung nach vorne zu machen. Vieles, was lange Zeit schwer faßbar erschien, wird mit einem Mal klar und einfach, manches, was als belanglos angesehen wurde, wird wichtig, und zahlreiche, in mühsamer Kleinarbeit gewonnene Befunde versinken zur Bedeutungslosigkeit. Einen solchen Sprung hat die Nervenphysiologie nach meiner Meinung in den letzten Jahren gemacht. Ich will versuchen, dieses Neue zu beschreiben und, so gut es geht zu bewerten, wobei vieles, was bis zum Jahr 1948 noch als wichtig angesehen wurde, als Ballast mutig abgeworfen werden soll.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

  • Adrian, R. H. 1956: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631–658.

    CAS  Google Scholar 

  • Alexander, J. T., and W. L. Nastuk 1953: An instrument for the production of micro-electrodes used in electrophysiological studies. Rev. Sci. Instr. 24, 528–531.

    Google Scholar 

  • Arnold, E., et J. Posternak 1954: Rétablissement de la conduction dans un nerf bloqué par un narcotique. Helv. physiol. pharmacol. Acta 12, C10-C11.

    CAS  Google Scholar 

  • Bernstein, J. 1912: Elektrobiologie. Braunschweig: F. Vieweg & Sohn.

    Google Scholar 

  • Boyle, P. J., and E. J. Conway 1941: Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.) 100, 1–63

    CAS  Google Scholar 

  • Brink, F. 1954: The rôle of calcium ions in neural processes. Pharmacol. Rev. 6, 243 bis 298.

    PubMed  CAS  Google Scholar 

  • Brink, F., D. W. Bronk, F. D. Carlson and C. M. Connelly 1952: The oxygen uptake of active axons. Cold Spr. Harb. Symp. quant. Biol. 17, 53–67.

    CAS  Google Scholar 

  • Brown, G. L., and O. Holmes 1956: The effects of activity on mammalian nerve fibres of low conduction velocity. Proc. roy. Soc. B 145, 1–14.

    Google Scholar 

  • Brown, H., and E. Goldberg 1949: The neutron pile as a tool in quantitative analyses; the palladium content of iron meteorites. Science 109, 347–353

    PubMed  CAS  Google Scholar 

  • Cardot, H., S. Faureet A. Arvanitaki 1950: La consommation d’oxygène in vivo du myocarde et du nerf des mollusques en relation avec la composition ionique du milieu. J. Physiol. (Paris) 42, 849–863

    CAS  Google Scholar 

  • Cole, K. S. 1953: Ions, potentials and the nerve impulse. Lecture and Review Series 53–7 Naval Medical Research Institute, Bethesda, Md.

    Google Scholar 

  • Connelly, C. M. 1958: briefliche Mitteilung.

    Google Scholar 

  • Coraboeuf, E. 1951: L’action particulière du C02 sur le nerf myélinisé et son indépendance à l’égard du pH C. R. Soc. Biol. (Paris) 145, 544–547.

    CAS  Google Scholar 

  • Coraboeuf, E., J. Boistel et G. Wallon 1956: L’action complexe de l’anhydride carbonique sur le tissu nerveux. C. R. Soc. Biol. (Paris) 149, 1869–1871.

    Google Scholar 

  • Coraboeuf, E., u. R. Niedergerke 1953: Kohlensäure und pH-Wirkung an der markhaltigen Einzelfaser des Frosches. Pflüg. Arch. ges. Physiol. 258, 103–107

    CAS  Google Scholar 

  • Coraboeuf, E., et R. Thieulin 1952: Interactions du gaz carbonique et des facteurs ioniques sur le nerf isolé. C. R. Soc. Biol. (Paris) 146, 187–190.

    CAS  Google Scholar 

  • Coraboeuf, E., R. Thieulin, and S. Weidmann 1954: Temperature effects on the electrical activity of Pukinje fibres. Helv. physiol. pharmacol. Acta 12, 32–41.

    PubMed  CAS  Google Scholar 

  • Crescitelli, F. 1951: Nerve sheath as a barrier to the action of certain substances. Amer. J. Physiol. 166, 229–240.

    PubMed  CAS  Google Scholar 

  • Curtis, H. J., and K. S. Cole 1940: Membrane action potentials from the squid giant axon. J. cell. comp. Physiol. 15, 147–157

    Google Scholar 

  • Curtis, H. J., and K. S. Cole 1942: Membrane resting and action potentials from the squid giant axon. J. cell, comp. Physiol. 19, 135–144.

    CAS  Google Scholar 

  • Dainty, J., and Krnjevic, K. 1955: The rate of exchange of 24Na in cat nerves. J. Physiol. (Lond.) 128, 489–503

    CAS  Google Scholar 

  • Draper, M. H., and S. Weidmann 1951: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 74–94.

    CAS  Google Scholar 

  • Eccles, J. C. 1953: The neurophysiological basis of mind. Oxford: Clarendon Press.

    Google Scholar 

  • Eccles, J. C. 1957: The physiology of nerve cells. Baltimore: Johns Hopkins Press.

    Google Scholar 

  • Edwards, C., and E. J. Harris 1957: Factors influencing the Na movement in frog muscle with a discussion of the mechanism of Na movement. J. Physiol. (Lond.) 135, 567–580.

    CAS  Google Scholar 

  • Falk, G., and R.W. Gerard 1954: Effect of micro-iiijected salts and ATP on the membrane potential and mechanical response of muscle. J. cell. comp. Physiol. 43, 393–403

    CAS  Google Scholar 

  • Fenn, W. O. 1936: Electrolytes in muscle. Physiol. Rev. 16, 450–487.

    CAS  Google Scholar 

  • Fenn, W. O., D. M. Cobb, A. H. Hegnauer and B. S. Marsh 1934: Electrolytes in nerve. Amer. J. Physiol. 110, 74–96.

    CAS  Google Scholar 

  • Fleckenstein, A. 1951: Elektrophysiologische Studien zum Mechanismus des Nervenblocks durch Schmerzstoffe und Lokalanästhetica. Naunyn-Schmiedeberg’s Arch, exp. Path. Pharmak. 212, 416–432.

    CAS  Google Scholar 

  • Fleckenstein, A. 1955: Der Kalium-Natrium-Austausch als Energieprinzip in Muskel und Nerv. Berlin-Göttingen-Heidelberg: Springer.

    Google Scholar 

  • Flückiger, E., and R. D. Keynes 1955: The calcium permeability of Loligo axons. J. Physiol. (Lond.) 128, 4lP-42P.

    Google Scholar 

  • Frankenhaeuser, B. 1957a: A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog. J. Physiol. (Lond.) 135, 550–559.

    CAS  Google Scholar 

  • Frankenhaeuser, B. 1957b: The effect of calcium on the myelinated nerve fibre. J. Physiol. (Lond.) 137, 245–260.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and A. L. Hodgkin 1957: The action of calcium on the electric properties of squid axons. J. Physiol. (Lond.) 137, 218–244.

    CAS  Google Scholar 

  • Gilbert, D. L., and W. O. Fenn 1957: Calcium equilibrium in muscle. J. gen. Physiol. 40, 393–408.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M. 1955: Action of cardiac glycosides on red cells. J. Physiol. (Lond.) 128, 56P-57P.

    Google Scholar 

  • Goldman, D.E. 1943: Potential, impedance and rectification in membranes. J. gen. Physiol. 27, 37–60.

    PubMed  CAS  Google Scholar 

  • Granit, R. 1955: Receptors and sensory perception. New Haven: Yale University Press.

    Google Scholar 

  • Grundfest, H., M. Altamirano-Orrego, C. Y. Kao and D. Nachmansohn 1953: Resting and action potentials of squid axons with internal ionic environment altered by microinjection. Fed. Proc. 12, 58.

    Google Scholar 

  • Grundfest, H., C. Y. Kao and M. Altamirano 1954: Bioelectric effects of ions microinjected into the giant axon of Loligo. J. gen. Physiol. 38, 245–282.

    PubMed  CAS  Google Scholar 

  • Grundfest, H., and D. Nachmansohn 1950: Increased sodium entry into squid giant axons during activity at high frequencies and during reversible inactivation of Cholinesterase. Fed. Proc. 9, 53.

    Google Scholar 

  • Grundfest, H., D. Nachmansohn, C. Y. Kao and R. Chambers 1952: Mode of blocking of axonal activity by curare and inhibitors of acetylcholinesterase. Nature (Lond.) 169, 190.

    CAS  Google Scholar 

  • Harris, E. J. 1956: Transport and accumulation in biological systems. London: Butterworth’s Scientific Publ.

    Google Scholar 

  • Harris, E. J., and H. Martins-Ferreira 1955: Membrane potentials in the muscles of the South American frog Leptodactylus ocellatus. J. exp. Biol. 32, 539–546.

    CAS  Google Scholar 

  • Henatsch, H. D., M. Loss u. N. Mühl 1956: Über Plateau-Verlängerungen der Aktionsströme isolierter Ran vierknoten in hypertonischem Milieu. Pflüg. Arch. ges. Physiol. 262, 562–572.

    CAS  Google Scholar 

  • Höber, R. 1905: Über den Einfluß der Salze auf den Ruhestrom des Froschmuskels. Pflüg. Arch. ges. Physiol. 106, 599–635

    Google Scholar 

  • Hodgkin, A. L. 1951: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409.

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Frankenhaeuser 1956: The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol. (Lond.) 131, 341–376.

    Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1939: Action potentials recorded from inside a nerve fibre. Nature (Lond.) 144, 710.

    Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1945: Resting and action potentials in single nerve fibres. J. Physiol. (Lond.) 104, 176–195.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1952: Movement of sodium and potassium ions during nervous activity. Cold Spr. Harb. Symp. quant. Biol. 17, 43–52.

    CAS  Google Scholar 

  • Hodgkin, A. L., A. F. Huxley and B. Katz 1949: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. physiol. 3, 129–150.

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Katz 1949a: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Katz 1949b: The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 109, 240–249.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1955a: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1955b: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1956: Experiments on the injection of substances into squid giant axons by means of a microsyringe. J. Physiol. (Lond.) 131, 592–616.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1957: Movements of labelled calcium in squid giant axons. J. Physiol. (Lond.) 138, 253–281.

    CAS  Google Scholar 

  • Hodler, J., R. Stämpfli u. I. Tasaki 1950: Die Wirkung von Veratrin auf die einzelne markhaltige Nervenfaser. Helv. physiol. pharmacol. Acta 8, C62-C63

    PubMed  CAS  Google Scholar 

  • Huxley, A. F. 1954: Electrical processes in nerve conduction. Aus: Ion transport across membranes, S. 23–34. New York: Academic Press.

    Google Scholar 

  • A. F. Huxley, and R. Stämpfli 1951a: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. Physiol. (Lond.) 112, 476–495

    CAS  Google Scholar 

  • A. F. Huxley, and R. Stämpfli 1951b: Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J. Physiol. (Lond.) 112, 496–508.

    CAS  Google Scholar 

  • Jenerick, H. P. 1953: Muscle membrane potential, resistance and external potassium chloride. J. cell. comp. Physiol. 42, 427–448.

    CAS  Google Scholar 

  • Keynes, R. D. 1951a: The ionic movements during nervous activity. J. Physiol. (Lond.) 114, 119–150.

    CAS  Google Scholar 

  • Keynes, R. D. 1951b: The role of electrolytes in excitable tissues. Publ. Inst. Biol. Univ. Brasil, Rio de Janeiro.

    Google Scholar 

  • Keynes, R. D., and P. R. Lewis 1951: The sodium and potassium content of cephalopod nerve fibres. J. Physiol. (Lond.) 114, 151–182.

    CAS  Google Scholar 

  • Keynes, R. D., and Martins-Ferreira, H. 1953: Membrane of potentials in the electroplates of the electric eel. J. Physiol. ( Lond. ) 119, 315–351.

    CAS  Google Scholar 

  • Kilb, H., U. R. Stämpfli 1956: Eine Vorrichtung zur Membranpotentialmessung am einzelnen bespülten Ranvier’schen Schnürring in Ruhe und Erregung. Helv. physiol. Pharmacol. Acta 14, 251–254.

    CAS  Google Scholar 

  • Krayer, O., and G. H. Acheson 1946: The pharmacology of the veratrum alkaloids. Physiol. Rev. 26, 383–446.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K. 1954: Na and Kindegenerating cat nerves. J. Physiol. (Lond.) 135, 281 bis 287

    Google Scholar 

  • Krnjevic, K. 1955: The distribution of Na and K in cat nerves. J. Physiol. (Lond.) 128, 473 bis 488.

    CAS  Google Scholar 

  • Krogh, A. 1946: The active and passive exchange of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. roy. Soc. B 133, 140 bis 200.

    CAS  Google Scholar 

  • Larramendi, L. M. H., R. Lorente De Nó and F. Vidal 1956: Restoration of sodium- deficient frog nerve fibres by an isotonic solution of guanidinium chloride. Nature (Lond.) 178, 316–317

    PubMed  CAS  Google Scholar 

  • Legouix, I. P., et R. Thieulin 1951: L’inhibition anélectrotonique test sensible de l’état physiologique de la fibre nerveuse. Application à l’étude de mécanisme de l’action du gaz carbonique. C. R. Soc. Biol. (Paris) 145, 548–550.

    CAS  Google Scholar 

  • Lehmann, H. J. 1953: The epineurium as a diffusion barrier. Nature (Lond.) 172, 1045 bis 1048.

    CAS  Google Scholar 

  • Lehmann, H. J. 1957: Über Struktur und Funktion der perineuralen Diffusionsbarriere. Z. Zellforsch. 46, 232–241.

    PubMed  CAS  Google Scholar 

  • Ling, G., and R. W. Gerard 1949: The normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–396.

    CAS  Google Scholar 

  • Ling, G., and J. W. Woodbury 1949: Effect of temperature on the membrane potential of frog muscle fibers. J. cell. comp. Physiol. 34, 407–412.

    CAS  Google Scholar 

  • Lorente De Nó, R. 1947: A study of nerve physiology. Studies from the Rockefeller Institute for medical research 132, Part 1 and 2.

    Google Scholar 

  • Lorente De Nó, R. 1949: On the effect of certain quaternary ammonium ions upon frog nerve. J. cell, comp. Physiol. 33, Suppl., 1–231.

    Google Scholar 

  • Lorente De Nó, R. 1950: The ineffectiveness of the connective tissue sheath of nerve as a diffusion barrier. J. cell. comp. Physiol. 35, 195–240.

    Google Scholar 

  • Lorente De Nó, R. 1958: Submicroscopic organisation and function of nerve cells. Correlation of nerve activity with membrane properties. Exp. Cell Res. Suppl. 5.

    Google Scholar 

  • Lorente De Nó, R., F. Vidal and L. M. H. Larramendi 1957: Restoration of sodiumdeficient frog nerve fibres by onium ions. Nature (Lond.) 179, 737–738.

    Google Scholar 

  • Lüttgau, H. CH. 1956: Das Na-Transportsystem während der Erregungsprozesse am Ran vier-Knoten isolierter markhalt iger Nervenfasern. Experientia (Basel) 12, 482 bis 486.

    Google Scholar 

  • Lüttgau, H. CH. 1958: Die Wirkung von Guanidinhydrochlorid auf die Erregungsprozesse an isolierten markhaltigen Nervenfasern. Pflüg. Arch. ges. Physiol. Im Druck.

    Google Scholar 

  • Marmont, G. 1949: Studies on the axon membrane. J. cell. comp. Physiol. 34, 351–382.

    CAS  Google Scholar 

  • Matchett, P. A., and J. A. Johnson 1954: Inhibition of sodium and potassium transport in frog sartorii in the presence of ouabain. Fed. Proc. 13, 384.

    Google Scholar 

  • Monnier, A.M. 1955: Die funktionelle Bedeutung der Dämpfung in der Nervenfaser. Ergebn. Physiol. 48, 230–285

    PubMed  CAS  Google Scholar 

  • Müller, P. 1956: Über verlängerte Aktionspotentiale in Na-haltigen und Nafreien Außenmedien. Int. Symposium über den Mechanismus der Erregung. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Nagel, W. 1909: Handbuch der Physiologie des Menschen. Bd. I V: Die allgemeine Physiologie der Nerven. Von M. Cremer. Braunschweig: F. Vieweg & Sohn.

    Google Scholar 

  • Nastuk, W. L., and A. L. Hodgkin 1950: The electrical activity of single muscle fibers. J. cell. comp. Physiol. 35, 39–73

    CAS  Google Scholar 

  • Nicely, M. B. 1955: Measurement of the potential difference across the connective tissue sheath of frog sciatic nerve. Experieritia (Basel) 11, 199–200.

    CAS  Google Scholar 

  • Niedergerke, R. 1953: Elektrotonus und Akkommodation an der markhaltigen Nerven-faser des Frosches. Pflüg. Arch. ges. Physiol. 258, 108–120.

    CAS  Google Scholar 

  • Niedergerke, R. 1951: Reizschwelle und Leitungsgeschwindigkeit des Froschnerven unter Kohlensäureeitiwirkung. Pflüg. Arch. ges. Physiol, 254, 193–204.

    CAS  Google Scholar 

  • Niedergerke, R., u. R. Stämpfli 1953: Die Kohlensäurewirkung an der einzelnen markhaltigen Nervenfaser bei Rheobasenbestimmungen. Pflüg. Arch. ges. Physiol. 258, 95–102.

    CAS  Google Scholar 

  • Overton, E. 1902: Beiträge zur allgemeinen Muskel- und Nervenphysiologie. II. Über die Unentbehrlichkeit von Natrium-(oder Lithium) Ionen für den Kontraktionsakt des Muskels. Pflüg. Arch. ges. Physiol. 92, 346–386.

    CAS  Google Scholar 

  • Ritchie, J. M., and R. W. Straub 1956: The after-effects of repetitive Stimulation on mammalian non-medullated fibres. J. Physiol. (Lond.) 134, 698–711.

    CAS  Google Scholar 

  • Ritchie, J. M., and R. W. Straub 1957: The hyperpolarisation which follows activity in mammalian non-medullated fibres. J. Physiol. (Lond.) 136, 80–97

    CAS  Google Scholar 

  • Rothexberg, M. A. 1950: Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes. Biochim. biophys. Acta 4, 96–114.

    Google Scholar 

  • Schaefer, H. 1940: Elektrophysiologie, Bd. I. WTien: Franz Deuticke.

    Google Scholar 

  • Schatzmann, H. J. 1953: Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv. physiol. pharmacol. Acta 11, 346–354.

    PubMed  CAS  Google Scholar 

  • Schmidt, H., and R. Stämpfli 1957: Die Depolarisation durch Calcium-Mangel und ihre Abhängigkeit von der Kalium-Konzentration. Helv. physiol. pharmacol. Acta 15, 200–211.

    PubMed  CAS  Google Scholar 

  • Segal, J. 1953/54: Elemente einer Theorie der Nervenerregung. I. Eiweißalteration und Nervenerregung. Wiss. Z. Humboldt Univ. Berlin.

    Google Scholar 

  • Segal, J. 1954/55: Elemente einer Theorie der Nervenerregung. II. Polarisationserscheinungen in heterogenen Medien. Wiss. Z. Humboldt Univ. Berlin.

    Google Scholar 

  • Segal, J. 1954/55: Elemente einer Theorie der Nervenerregung. III. Der zeitliche Ablauf der Alterationsprozesse in Eiweißlösungen und der Erregung im Nerven. Wiss. Z. Humboldt Univ. Berlin.

    Google Scholar 

  • Segal, J. 1956: Bemerkungen zur Theorie der Erregung. Int. Symposium über den Mechanismus der Erregung. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Shanes, A. M. 1951: Potassium movement in relation to nerve activity. J. gen. Physiol. 34, 795–807.

    PubMed  CAS  Google Scholar 

  • Shanes, A. M. 1952: The ultraviolet spectra and neurophysiological effects of veratrine alkaloids. J. Pharmacol. 105, 216–231.

    CAS  Google Scholar 

  • Shanes, A. M., H. Grundfest and W. Freygang 1953: Tow level impedance changes following the spike in the squid giant axon before and after treatment with veratrine alkaloids. J. gen. Physiol. 37, 39–51.

    PubMed  CAS  Google Scholar 

  • Stämpfli, R. 1952: Bau und Funktion isolierter markhaltiger Nervenfasern. Ergebn. Physiol. 47, 70–165.

    PubMed  Google Scholar 

  • Stämpfli, R. 1954: A new method for measuring membrane potentials with external electrodes. Experientia (Basel) 10, 508–509

    Google Scholar 

  • Stämpfli, R. 1956a: Die Ionentheorie des Erregungsvorganges und ihre möglichen Zusammenhänge mit der Biochemie. Arch. f. exper. Pathol. Pharmacol. 228, 29–46.

    Google Scholar 

  • Stämpfli, R. 1956b: Nouvelle méthode pour enregistrer le potentiel d’action d’un seul étranglement de Ranvier et sa modification par un brusque changement de la concentration du milieu extérieur. J. de Physiol. (Paris) 48, 710–714.

    Google Scholar 

  • Stämpfli, R., and K. Nishie 1956: Effects of Calcium-free solutions on membrane-potential of myelinated nerve fibers of the Brazilian frog Leptodactylus ocellatus. Helv. physiol. Pharmacol. Acta 14, 93–104.

    Google Scholar 

  • Steinbach, H. B. 1952: Modern trends in physiology and biochemistry, p. 173. New York: Academic Press.

    Google Scholar 

  • Straub, R. 1955: Der Einfluß von Acetylcholin, Eserin und Prostigmin auf das Ruhepotential markhaltiger Nervenfasern. Helv. physiol. pharmacol. Acta 13, C34-C36.

    PubMed  CAS  Google Scholar 

  • Straub, R. 1956: Die Wirkungen von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches. Helv. physiol. Acta pharmacol. 14, 1–28.

    CAS  Google Scholar 

  • Tasaki, I. 1939a: The strength-duration relation of the normal, polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367–379

    Google Scholar 

  • Tasaki, I. 1939b: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Amer. J. Physiol. 127, 211–227.

    Google Scholar 

  • Tasaki, I. 1950: Excitation of single nerve fiber by action current from another single fiber. J. Neurophysiol. 13, 177–183

    Google Scholar 

  • Tasaki, I. 1953: Nervous transmission. Springfield, Ill.: Ch. C. Thomas.

    Google Scholar 

  • Tasaki, I. 1955: Etudes sur le processus de production du potential d’action d’un noeud de Ranvier. Coll. internat, centre nat. recherche scientifique (Paris) 67, 1–27.

    Google Scholar 

  • Tasaki, I. 1956: Initiation and abolition of the action potential of a single node of Ranvier. J. gen. Physiol. 39, 377–395.

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and W. H. Freygang 1955: The parallelism between the action potential, action current, and membrane resistance at a node of ranvier. J. gen. Physiol. 39, 211 bis 223.

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and S. Hagiwara 1957: Demonstration of two stable potential states in the squid giant axon under tetraethyl-ammonium chloride. J. gen. Physiol. 40, 859–885

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and K. Mizuguchi 1949: The changes in the electric impedance during activity and the effect of alcaloids and polarisation upon bioelectric processes in the myelinated nerve fibre. Biochem. biophys. Acta 3, 484–493.

    CAS  Google Scholar 

  • Teorell, T. 1949: Membrane electrophoresis in relation to bioelectrical polarization effects. Arch. Sci. physiol. 3, 205–218

    CAS  Google Scholar 

  • Tobias, C. A., and R. W. Dunn 1949: Analyses of microcomposition of biological tissue by means of induced radioactivity. Science 109, 109–113

    PubMed  CAS  Google Scholar 

  • Trautwein, W., U. K. Zink 1952: Über Membran- und Aktionspotentiale einzelner Myokardfasern des Kalt- und Warmblüterherzens. Pflüg. Arch. ges. Physiol. 256, 68–84.

    Google Scholar 

  • Ussing, H. H. 1949: The distinction by means of tracers between active transport and diffusion. Acta physiol. scand. 19, 43–56.

    CAS  Google Scholar 

  • Weidmann, S. 1951a: Electrical characteristics of Sepia axons. J. Physiol. (Lond.) 114, 372–381.

    CAS  Google Scholar 

  • Weidmann, S. 1951b: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond). 115, 227–236.

    CAS  Google Scholar 

  • Weidmann, S. 1955a: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.) 127, 213–224.

    CAS  Google Scholar 

  • Weidmann, S. 1955b: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568–582.

    CAS  Google Scholar 

  • Weidmann 1956: Elektrophysiologie der Herzmuskelfaser. Bern u. Stuttgart: Huber.

    Google Scholar 

  • Weidmann 1957: Resting and action potentials of cardiac muscle. Ann. N. Y. Acad. Sci. 65, 663–678.

    PubMed  CAS  Google Scholar 

  • Wilde, W. S. 1957: The pulsatile nature of the release of potassium from heart muscle during the systole. Ann. N. Y. Acad. Sci. 65, 693–699

    PubMed  CAS  Google Scholar 

  • Williams, L. W. 1909: The anatomy of the common squid, Loligo pealii. LESUEUR, Leiden: E. J. Brill

    Google Scholar 

  • Woodbury, J. W. 1952: Direct membrane resting and action potentials from single myelinated nerve fibers. J. cell. comp. Physiol. 39, 323–339

    CAS  Google Scholar 

  • Woodbury, J. W., and L. A. Woodbury 1950: Membrane resting and action potentials from excitable tissues. Fed. Proc. 9, 139.

    Google Scholar 

  • Woodbury, L. A., H. H. Hecht and A. R. Christopherson 1951: Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Amer. J. Physiol. 164, 307–318.

    PubMed  CAS  Google Scholar 

  • Young, J. Z. 1944: Giant nerve fibres. Endeavour 3, 108–115

    Google Scholar 

  • Young, J. Z. 1951: Doubt and Certainty in Science. Oxford, Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

v. Muralt, A. (1958). Die Ionentheorie der Erregung. In: Neue Ergebnisse der Nervenphysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87587-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87587-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87588-5

  • Online ISBN: 978-3-642-87587-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics