Advertisement

Quantitative Structure-Activity Relationships and Molecular Orbitals in Medicinal Chemistry

  • William P. Purcell
  • John M. Clayton

Abstract

Seeking to attain the ultimate goal of rational drug design and to aid in the postulation of drug-action mechani sms at the molecular level , investigators have emp loyed two distinctly different techniques of particular interest to us. in the first techni que, statistical methods have been applied to the corre lati on of biological activity data with either the arbitrary parameters of the mathematical mode ls such as that reported by Free and Wilson [1] or linear free-energy-re lated physi cochemical properties ascribed to portions of the molecule, such as the wide lyapplied model of Hansch [2,3,4]. Although gradual changes in chemical structure and correspond ing changes in biological activity have intrigued sci ent ists for about 100 years [5], signifi cant progress in quantitative correlation techniques has developed only in the past fifteen years or so [6,7,8].

Keywords

Inhibitory Potency Molecular Orbital Calculation Molecular Orbital Method Substituent Position Quantum Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Free, S. M., Jr., and Wilson, J. W., J. Med. Chem., 7, 398 (1964).CrossRefGoogle Scholar
  2. [2]
    Hansch, C., and Fujita, T., J. Am. Chem. Soc., 86, 1616 (1964).CrossRefGoogle Scholar
  3. [3]
    Hansch, C., pp . 141–167 in Proceedings of the Third International Congress on Pharmacology, Sao Paulo, 1966, Vol . 7, Pergamon Press, New York (1968).Google Scholar
  4. [4]
    Hansch, C., p Drug Design, Vol . 1, (E. J . Ariëns, ed .) Academic Press, New York (in press).Google Scholar
  5. [5]
    Brown, A. C., and Fraser, T., Trans. Roy. Soc. Edinburgh, 25, 151 (1869)Google Scholar
  6. [5a]
    through Ariëns, E. J ., Simonis, A. M., and Van Rossum, J. M.,“Drug-Receptor Interacti on: Interacti on of One or More Drugs with One Receptor System”, Mol. Pharmacol., (E. J. Ari ëns, ed .) Academic Press, New York (1964) , p . 126.Google Scholar
  7. [6]
    Purcell, W. P., Singer, J . A., Sundaram, K., and Parks, G. L., Chapter 10 in Medicinal Chemistry, 3rd Edition, (A. Burger, ed.) John Wiley and Sons, Inc., New York (in press) , p. 164.Google Scholar
  8. [7]
    Purcell, W. P., and Clayton, J. M., Chapter 28 in Annual Reports in Medicinal. Chemistry, 1968, (C. K. Cain, ed.) Academic Press, New York (1969) , p. 314.Google Scholar
  9. [8]
    Cavallito, C., Ann. Rev. Pharmacol., 8, 39 (1968).PubMedCrossRefGoogle Scholar
  10. [9]
    Pullman, B., and Pullman, A., Quantum Biochemistry, Intersci ence Publishers, New York (1963).Google Scholar
  11. [10]
    Purcell, W. P., Biochim. Biophys. Acta, 105, 201 (1965).PubMedCrossRefGoogle Scholar
  12. [11]
    Purcell, W. P., and Clayton, J. M., J. Med. Chem., 11, 199 (1968).PubMedCrossRefGoogle Scholar
  13. [12]
    Beasley, J. G., and Purcell, W. P., Biochim. Biophys. Acta, 178, 175 (1969).PubMedCrossRefGoogle Scholar
  14. [13]
    Clayton, J. M., and Purcell, W. P., J. Med. Chem., 12, 1087 (1969)PubMedCrossRefGoogle Scholar
  15. [14]
    Purcell, W. P., and Singer, J. A., J. Phys. Chem., 69, 4097 (1965).PubMedCrossRefGoogle Scholar
  16. [15]
    Purcell, W. P., J. Phys. Chem., 68, 2666 (1964).CrossRefGoogle Scholar
  17. [16]
    Taft, R. W., Jr., Chapter 13 in Steric Effects in Organic Chemistry, (M. S. Newman, ed.) John Wi ley and Sons, Inc., New York (1956).Google Scholar
  18. [17]
    Hammett, L. P., Chem. Rev., 17, 125 (1935).CrossRefGoogle Scholar
  19. [18]
    Hansch, C. , Steward, A. R., Anderson, S. M., and Bentley, D., J. Med. Chem., 11, 1 (1968).PubMedCrossRefGoogle Scholar
  20. [19]
    Tigertt, W. D., Military Med., Suppl., 131, 853 (1966).Google Scholar
  21. [20]
    Singer, J. A., and Purcell, W. P., J. Med. Chem., 10, 754 (1967).PubMedCrossRefGoogle Scholar
  22. [21]
    Purcell, W. P., and Sundaram, K., J. Med. Chem., 12 18 (1969).PubMedCrossRefGoogle Scholar
  23. [22]
    Boykin, D. W., Jr., Patel, A. R., and Lutz, R. E., J. Med. Chem., 11, 273 (1968).PubMedCrossRefGoogle Scholar
  24. [23]
    Pinder, R. M., and Burger, A., J. Med. Chem., 11, 267 (1968).PubMedCrossRefGoogle Scholar
  25. [24]
    Rothe, W. E., and Jacobus, D. P., J. Med. Chem., 11, 366 (1968).PubMedCrossRefGoogle Scholar
  26. [25]
    Williams, R. T., p . 652 in Detoxication Mechanisms, 2nd Edition, John Wiley and Sons, Inc., New York (1959).Google Scholar
  27. [26]
    Nyberg, W. H., and Cheng, C. C., J. Med. Chem., 8, 531 (1965).PubMedCrossRefGoogle Scholar
  28. [27]
    Sundaram, K., and Purcell, W. P., Intern. J. Quantum Chem., 2, 145 (1968).CrossRefGoogle Scholar
  29. [28]
    Stewart, F. H. C., Chem. Rev., 64, 129 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1970

Authors and Affiliations

  • William P. Purcell
    • 1
  • John M. Clayton
    • 2
  1. 1.Department of Molecular and Quantum Biology, College of PharmacyUniversity of Tennessee Medical UnitsUSA
  2. 2.United States Public Health Services FellowUSA

Personalised recommendations