Analysis of Human Leukaemic Cells Using Cell Surface Binding Probes and the Fluorescence Activated Cell Sorter

  • M. Greaves
  • D. Capellaro
  • G. Brown
  • T. Revesz
  • G. Janossy
  • T. A. Lister
  • M. Beard
  • N. Rapson
  • D. Catovsky
Part of the Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 19)

Summary

Cell surface binding fluorescent ligands have been used to distinguish between different types of leukaemic cells and between leukaemic cells and their presumed normal counterparts or progenitors. Binding of these probes was evaluated using the Fluorescence Activated Cell Sorter (FACS) which provides both rapid, objective and quantitative recording of fluorescent signals from individual cells plus physical separation of cells of particular interest. Binding sites for cholera toxin (monosialoganglioside GM1) were found to be normally expressed in chronic leukaemias but greatly diminished or absent in acute leukaemias irrespective of their morphological type. Antibodies specific for the common form of acute lymphoblastic leukaemia (ALL, non-T, non-B) have been produced in rabbits. After extensive absorption and testing these were shown to define a cell surface antigen of non-T, non-B type ALLs. The antigen is absent from other leukaemias with two interesting exceptions — the majority of acute undifferentiated leukaemias express the antigen as do a proportion of chronic granulocytic leukaemias in blast crisis relapse.

The anti-ALL antibodies can therefore be used to distinguish different leukaemias and, more significantly, can identify the existence of relatively rare leukaemic cells in the blood of untreated patients and the marrow of treated patients considered to be in remission.

Keywords

Lymphoma Leukemia Sarcoma Trypsin Fluores 

Abbreviations used

AUL

Acute Undifferentiated Leukaemia

ALL

Acute Lymphoblastic Leukaemia

AML

Acute Myeloblastic Leukaemia

AMML

Acute Myelo-Monocytic Leukaemia

AMonL

Acute Monocytic Leukaemia

CML

Chronic Myeloid Leukaemia

CLL

Chronic Lymphocytic Leukaemia

Ph1

Philadelphia chromosome

PHA

Phytohaemagglutinin

T

Thymus-derived lymphocyte

B

‘Bursa equivalent’ derived lymphocyte

FACS

Fluorescence Activated Cell Sorter

GM1

Monosialoganglioside (a charged glycolipid of known structure)

SmIg

Surface membrane immunoglobulin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fialkow, P. (1974) The origin and development of human tumours studied with cell markers. New Engl. J. Med., 270, 26.Google Scholar
  2. 2.
    Greaves, M. F. (1975) Clinical applications of cell surface markers. Progr. Haematol. I, 255.Google Scholar
  3. 3.
    Seligmann, M. (1975) Membrane cell markers in human leukaemias and lymphomas. Brit. J. Haematol., 31 (suppl.), p. 1.CrossRefGoogle Scholar
  4. 4.
    Brown, G., Greaves, M. F., Lister, T. A., Rapson, N. and Papamichael, M. (1974) Expression of human T and B lymphocyte cell surface markers on leukaemia cells. Lancet, ii, 753.Google Scholar
  5. 5.
    Baker, M. A., Falk, R., Falk, J. and Greaves, M. F. (1975) Detection of a monocyte specific antigen on human acute leukaemia cells. Brit. J. Haematol. 32, 13.Google Scholar
  6. 6.
    Salmon, S. E. and Seligmann, M. (1974) B cell neoplasia in Man. Lancet, 1230.Google Scholar
  7. 7.
    Lukes, R. J. and Collins, R. D. (1975) New approaches to the classification of the lymphomata. Brit. J. Cancer, 31, Suppl. II, p. 1.Google Scholar
  8. 8.
    Edelson, R. L., Kirkpatrick, C. H., Sherach, E. M., Schein, P. S., Smith, R. N., Green, I. and Lutiner, M. (1974) Preferential cutaneous infiltration by neo-plastic thymus derived lymphocytes. Ann. Int. Med., 80, 685.PubMedGoogle Scholar
  9. 9.
    Flandrin, G., Brouet, J. C., Daniel, M. T. and Preud’homme, J. L. (1975) Acute leukaemia with Burkitt’s tumour cells. A study of six cases with special reference to lymphocyte surface markers. Blood, 45, 183.PubMedGoogle Scholar
  10. 10.
    Catovsky, D., Goldman, J. M., Okos, A., Frisch, B. and Galton, D. A.G. (1974) T lymphoblastic leukaemia: a distinct variant of acute leukaemia. Brit. Med. J., p. 643.Google Scholar
  11. 11.
    Borella, L. and Sen, L. (1973) T cell surface markers on lymphoblasts from acute lymphocytic leukaemia. J. Immunol., 111, 1275.Google Scholar
  12. 12.
    Cuatrecasas, P. (1973) Gangliosides and membrane receptors for cholera toxin. Biochem., 12, 3558.CrossRefGoogle Scholar
  13. 13.
    Hakomori, S. (1975) Structures and organisation of cell surface glycolipids. Biochem. et Biophys. Acta., 417, 55.Google Scholar
  14. 14.
    Mohanakumar, T., Metzgar, R. S. and Miller, D. S. (1974) Human leukaemia cell antigens: Serological characterisation with xeno-antisera. J. Nat. Cancer Inst., 52, 1435.Google Scholar
  15. 15.
    Baker, M. A., Ramachandar, K. and Taub, R. N. (1974) Specificity of heteroantisera to human acute leukaemia associated antigens. J. Clin. Invest., 54, 1273.PubMedCrossRefGoogle Scholar
  16. 16.
    Greaves, M. F., Brown, G., Lister, T. A. and Rapson, N. T. (1975) Antisera to Acute Lymphoblastic Leukaemia cells. Clin. Immunol. Immunopath., 4, 67.CrossRefGoogle Scholar
  17. 17.
    Brown, G., Capellaro, D. and Greaves, M. F. (1975) Human leukaemia associated antigens. J. Nat. Cancer Inst. (in press).Google Scholar
  18. 18.
    Böyum, A. (1968) Separation of leukocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 21, Suppl. 97.Google Scholar
  19. 19.
    Bonner, W. A., Hulett, H. R., Sweet, R. G. and Herzenberg, L. A. (1972) Fluorescence activated cell sorting. Rev. Scientific Instr., 43, 404.CrossRefGoogle Scholar
  20. 20.
    Hulett, H. R., Bonner, W. A., Sweet, R. G. and Herzenberg, L. A. (1973) Development and applications of a rapid cell sorter. Clin. Chem., 19, 813.PubMedGoogle Scholar
  21. 21.
    Revesz, T., Greaves, M. F., Capellaro, D. and Murray, R. K. Differential expression of cell surface binding sites for cholera toxin in acute and chronic leukaemias. Brit. J. Haematol. (in press).Google Scholar
  22. 22.
    Beard, M. E. J., Amess, J. L., Roberts, M., Kirk, B., Durrant, J. and Galton, D. A. G. (1976) Blast crisis of chronic myeloid leukaemia (CML) I. Presentation simulating acute lymphoblastic leukaemia (ALL) Brit. J. Haematol. (in press).Google Scholar
  23. 23.
    Janossy, G., Greaves, M. F., Revesz, T., Lister, T. A., Roberts, M., Durrant, J. and Beard, M. (1976) Blast crisis of chronic myeloid leukaemia (CML): II. Membrane marker characteristics. Brit. J. Haematol. (in press).Google Scholar
  24. 24.
    Critchley, D. R. and MacPherson, I. (1973) Cell density dependent glycolipids in NIL hamster cell derived transformed cell lines. Biochim. Biophys. Acta, 296, 146.Google Scholar
  25. 25.
    Hollenberg, M. D., Fishman, P. H., Bennett, V. and Cuatrecasas, P. (1974) Cholera toxin and cell growth: role of membrane gangliosides. Proc. Natl. Acad. Sci., 71, 4224.PubMedCrossRefGoogle Scholar
  26. 26.
    Mathé, G., Tubiana, M., Calman, F., Schlumberger, J. R., Berumen, L., Choquet, C., Cattan, A. and Schneider, M. (1967) Les syndromes de leucemie aigue (SLA) appraisant au cours de l’evolution des haematosarcomes et des leucemies chroniques (analyse clinique). Nouv. Rev. Fr. Haematol., 7, 543.Google Scholar
  27. 27.
    Boggs, D. R. (1974) Hematopoietic stem cell theory in relation to possible lymphoblastic conversion of chronic myeloid leukaemia. Blood, 44, 449.PubMedGoogle Scholar
  28. 28.
    McCaffrey, R., Harrison, T. A., Parkman, R. and Baltimore, D. (1975) Terminal deoxynucleotidyl transferase activity in human leukaemic cells and in normal human thymocytes. New Engl. J. Med. p. 775.Google Scholar
  29. 29.
    Gallo, R. C. (1975) Terminal transferase and leukaemia. New Engl. J. Med., p. 804.Google Scholar
  30. 30.
    Brown, G., Hogg, N. and Greaves, M. F. (1975) A candidate leukaemia specific antigen in Man. Nature, 258, 454.PubMedCrossRefGoogle Scholar
  31. 31.
    Teich, N. M., Weiss, R. A., Salahuddin, S. Z., Gallagher, R. E., Gillespie, D. FI. and Gallo, R. C. (1975) Infective transmission and characterisation of a Ctype virus released by cultured human myeloid leukaemia cells. Nature, 256, 552.CrossRefGoogle Scholar
  32. 32.
    Wunderlich, J. R., Rosenberg, E. B. and Connolly, J. M. (1971) Human lymphocyte dependent cytotoxic antibody and mechanisms of target cell destruction in vitro. In Progr. in Immunology’ p. 473 ( Ed. B. Amos) Acad. Press, N.Y.Google Scholar
  33. 33.
    Davies, D. A. L and O’Neill, G. J. (1973) In vivo and in vitro effects of tumour specific antibodies with chlorambucil. Brit. J. Cancer, Suppl. 1, 28, 285.Google Scholar
  34. 34.
    Greaves, M. F. and Brown, G. (1973) A human B lymphocyte antigen. Nature New Biol., 246, 116.PubMedCrossRefGoogle Scholar
  35. 35.
    Engelfriet, C. P., Diepenhorst, P., Giessen, M. V. D. and von Riesz, E. (1975) Removal of leucocytes from whole blood and erythrocyte suspensions by filtration through cotton wool. IV. Immunisation studies in rabbits. Vox Sang., 28, 81.PubMedCrossRefGoogle Scholar

Copyright information

© J. F. Lehmanns Verlag München 1976

Authors and Affiliations

  • M. Greaves
    • 1
  • D. Capellaro
    • 1
  • G. Brown
    • 1
  • T. Revesz
    • 1
  • G. Janossy
    • 1
  • T. A. Lister
    • 2
  • M. Beard
    • 3
  • N. Rapson
    • 4
  • D. Catovsky
    • 5
  1. 1.ICRF Tumour Immunology Unit,Department of ZoologyUniversity College LondonUK
  2. 2.ICRF Medical Oncology Unit, St. Bartholomew’s HospitalLondonUK
  3. 3.Department of HaematologySt. Bartholomew’s HospitalLondonUK
  4. 4.Department of HaematologyInstitute of Child HealthLondonUK
  5. 5.MRC Leukaemia UnitRoyal Postgraduate Medical SchoolLondonUK

Personalised recommendations