Skip to main content
  • 337 Accesses

Abstract

It was discovered through free flight impact tests using specimens traveling at a constant velocity prior to impact that one form of the deformation curve for high purity aluminum and copper single crystals could be represented as a 1/4 power law. This particular deformation law as found to be predictable using the stress and strain ratios of the aggregate theory of Taylor. These predictions were made on the basis of the deformation of polycrystalline metals.

A generalization of the i power law constitutive relation is shown to account for uniaxial deformation that occurs for both single crystal and polycrystalline specimens subjected to static or dynamic deformations. This formulation is related to the parabolic type of constitutive development proposed bv Bell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Bell, J. Mech. Phys. Solids 14, 309 (1966).

    Article  ADS  Google Scholar 

  2. C. Truesdell and W. Noll, Handbuch der Phvsik III/3, P124 (1964).

    Google Scholar 

  3. T. von Karman, N.D.R.C. Report A29 O.S.R.O., 365 (1942).

    Google Scholar 

  4. G. I. Taylor, British Official Report R.C., 329 (1942).

    Google Scholar 

  5. K. Rakhmatulin, Prikl. Mat. Mekh. 9, 19 (1945).

    Google Scholar 

  6. W. J. Gillich, Phil. Mag. 15, 659 (1967).

    Article  ADS  Google Scholar 

  7. J. F. Bell, Proc. of the 3rd U.S. Natn. Congr. Appl. Mech., p. 489 (1958).

    Google Scholar 

  8. G. I. Taylor, J. Inst. Metals 62, 30 (1938).

    Google Scholar 

  9. J. F. W. Bishop and R. Hill, Phil. Mag. 42, 414 (1951).

    MathSciNet  MATH  Google Scholar 

  10. J. F. Bell, Phil. Mag. 10, 107 (1964).

    Article  ADS  Google Scholar 

  11. J. F. Bell, Phil. Mag. 11, 1135 (1965).

    Article  ADS  Google Scholar 

  12. J. F. Bell (in preparation), Physics of Large Deformation of Crystalline Solids (Springer-Berlin).

    Google Scholar 

  13. R. P. Carreker and W. R. Hibbard, Acta Metallurgica 1, 654 (1953).

    Article  Google Scholar 

  14. R. P. Carreker and R. W. Guard, J. Metals 8, 179 (1956).

    Google Scholar 

  15. W. Sharpe, Ph.D. Thesis, The Johns Hopkins Univ., Baltimore, Md. (1956).

    Google Scholar 

  16. U. S. Lindholm and L. M. Yeakley, J. Mech. Phys. Solids 13, 41 (1964).

    Article  Google Scholar 

  17. R. L. Fleischer, J. Mech. Phys. Solids 6, 301 (1958).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gillich, W.J. (1968). Constitutive Relationships from Impact Studies. In: Lindholm, U.S. (eds) Mechanical Behavior of Materials under Dynamic Loads. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87445-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87445-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87447-5

  • Online ISBN: 978-3-642-87445-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics