Skip to main content

3-D Vision for Robot Applications

  • Conference paper

Part of the book series: NATO ASI Series ((NATO ASI F,volume 33))

Abstract

Like human vision, robot vision should be able to perceive three-dimensional (3-D) objects, i.e., be able to detect, verify, recognize, locate, inspect, and describe different 3-D objects. Although real objects are three-dimensional, humans can perceive them on the basis of visual data that is two-dimensional (2-D) and incomplete. Utilizing a variety of range cues (e.g., geometric, perspective, texture and shading variations, and occlusion), human perception maps visual data into 3D features and matches them with those of known models. Similar range cues are applicable to robot perception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschuler, M.D., et al., “The Numerical Stereo Camera,” Proc. of Society for Photo-Optical Instrumentation Engineers Conf. on 3-D Machine Perception Vol. 283, pp. 15–24, SPIE, Bellingham, Washington (1981).

    Google Scholar 

  2. Ballard, D.H., and C.M. Brown, Computer Vision, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982 ).

    Google Scholar 

  3. Bolles, R.C., and R.A. Cain, “Recognizing and Locating Partially Visible Objects: The Local-Featu! e-Focus Method,” Int. J. Robotics Research Vol. 1, No. 3, pp. 57–82 (1982).

    Article  Google Scholar 

  4. Bolles, R.C., and P. Horaud, “3DPO’s Strategy for Matching Three-Dimensional Objects in Range Data,” Proc. IEEE Int. Conf. on Robotics pp. 78–85, Atlanta, Georgia (March 1984).

    Google Scholar 

  5. Bolles, R.C., and P. Horaud, “3DPO: A Three-Dimensional Part Orientation System,” Int. J. Robotics Research Vol. 5, No. 2 (1986).

    Google Scholar 

  6. Duda, R.O. et al., “Use of Range and Reflectance Data to Find Planar Surface Regions,” Proc. IEEE Trans. on Pattern Analysis and Machine Intelligence Vol. PAMI-1, No. 3, pp. 259–271 (July 1979).

    Article  Google Scholar 

  7. Fischler, M.A., and R.C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” A.I. Center Technical Note 213, SRI International, Menlo Park, California (March 1980).

    Google Scholar 

  8. Gennery, D.B., “Tracking Known Three-Dimensional Objects,” Proc. AAAI-82 pp. 13–17 (18–20 August 1982 ).

    Google Scholar 

  9. Gleason, G.J., and G.J. Agin, “A Modular Vision System for Sensor-Controlled Manipulation and Inspection,” 9th Int. Symposium and Exposition on Industrial Robots, pp. 57–70, Washington, D.C. (March 1979).

    Google Scholar 

  10. Goodwin, F.E., “Coherent Laser Radar 3-D Vision Sensor,” SME Technical Paper MS85–1005, Society of Manufacturing Engineers, Dearborn, Michigan (1985).

    Google Scholar 

  11. Grimson, W.E.L., and T. Lozano-Perez, “Model-Based Recognition and Location from Sparse Range or Tactile Data,” Int. J. Robotics Research Vol. 3, No. 3, pp. 3–35 (1984).

    Article  Google Scholar 

  12. Haralick, R.M., “Digital Step Edges from Zero Crossings of Second Directional Derivatives,” IEEE Trans. PAMI, Vol. PAMI-6, pp. 58–68 (January 1984).

    Google Scholar 

  13. Hebert, M., and T. Kanade, “First Results on Outdoor Scene Analysis Using Range Data,” Proc. of Image Understanding Workshop Miami, Florida (December 1985).

    Google Scholar 

  14. Honeywell, Inc., “Enhanced Enabling Technology Development and Feasibility Demonstration Plan, Intelligent Task Automation,” Air Force Wright Aeronautical Laboratory Contract F33615–82-C-5092 (April 29, 1983 ).

    Google Scholar 

  15. Horn, B.P.K., “Shape From Shading,” P.H. Winston (ed.), The Psychology of Computer Vision (McGraw Hill, New York, New York, 1975 ).

    Google Scholar 

  16. Ikeuchi, K. “Determining Surface Orientation of specular Surfaces by Using Photometric Stereo Method,” IEEE Trans on Pattern Analysis and Machine Intelligence Vol. PAMI-3, No. 6, pp. 661–669 (November 1981).

    Google Scholar 

  17. Jarvis, R.A., “A Perspective on Range Finding Techniques for Computer Vision,” IEEE Trans PAM Vol. PAMI-5, No. 2, pp. 122–139 (March 1983).

    Google Scholar 

  18. Johnston, A.R., “Infrared Laser Rangefinder,” Report NPO-13460, Jet Propulsion Laboratory, NASA New Technology, Pasadena, California (August 1973).

    Google Scholar 

  19. Kender, J.R., “Saturation, Hue, and Normalized Color: Calculation, Digitization Effects, and Use,” Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania (November 1976).

    Google Scholar 

  20. Kitagawa, H. et, al., “Extraction of Surface Gradient from Shading Images,” Trans. IEEE of Japan Vol. J66, No. 1, pp. 65–72 (1983).

    Google Scholar 

  21. Koshikawa, K., “A Method of Finding Surface Orientation by Polarization Analysis of Reflected Light,” Trans. SICE, Vol. 18, No. 10, pp. 77–79 (1982).

    Google Scholar 

  22. Kremers, J.H., et al., “Development of a Prototype Robotic Arc Welding Work Station,” NAVSEA Report S50002–83, SRI International, Menlo Park, California (May 1983).

    Google Scholar 

  23. Kremers, J.H., et al., “Development of a Prototype Robotic Arc Welding Work Station,” NAVSEA Report S5002–83–2, SRI International, Menlo Park, California (May 1985).

    Google Scholar 

  24. Krotkov, E. and J.P. Martin, “Range from Focus,” Proc. 1986 IEEE Robotics and Automation pp. 1093–1098, San Francisco, California (April 1986 ).

    Google Scholar 

  25. Levine, M., “Rule-Based Image Segmentation: A Dynamic Control Strategy Approach,” Technical Report TR-83–9, Computer Vision and Robotics Laboratory, McGill University (1983).

    Google Scholar 

  26. Marr, D., and E. Hildreth, “Theory of Edge Detection,” Proc. R. Soc. Lond., Vol. B-207, pp. 187–217, London, Great Britain (1980).

    Google Scholar 

  27. Miller, R.K., 3-D Machine Vision, SEA’ Technical Publications, Madison, Georgia (1984).

    Google Scholar 

  28. Mulgaonkar, P.G., et al., “Matching `Sticks, Plates and Blobs’ Objects Using Geometric and Relational Constraints, ” Image and Vision Computing Vol. 1 (March 1984).

    Google Scholar 

  29. Mulgaonkar, P.G., and L.G. Shapiro, “Hypothesis-Based Geometric Reasoning on Computer Vision: Representation and Control), Bellaire, Michigan, pp. 11–18 (13–16 October 1985 ).

    Google Scholar 

  30. Nitzan, D., “Scene Analysis Using Range Data,” A.I. Center Technical Note 69, Stanford Research Institute, Menlo Park, California (August 1972).

    Google Scholar 

  31. Nitzan, D. et al, “The Measurement and Use of Registered Reflectance and Range Data in Scene Analysis,” Proc. IEEE Trans. on Pattern Analysis and Machine Intelligence Vol. 65, No. 2, pp. 206–220 (February 1977).

    Google Scholar 

  32. Nitzan, D., C. Barrouil, P. Cheeseman, and R.C. Smith, “Use of Sensors in Robot Systems,” ‘83 International Conf. on Advanced Robotics Tokyo, Japan (12–13 September 1983 ).

    Google Scholar 

  33. Ohlander, R., K. Price, and D.R. Reddy, “Picture Segmentation Using a Recursive Region Splitting Method, ” Computer Graphics and Image Processing Vol. 8, No. 3 (December 1978).

    Google Scholar 

  34. Ohta, Y., T. Kanade, and T. Sakai, “Color Information for Region Segmentation, ” Computer Graphics and Image Processing Vol. 13 pp. 222–241 (1980).

    Article  Google Scholar 

  35. Ohta, Y. et al., “Obtaining Surface Orientation from Texels Under Perspective Projection,” Proc. 7th IJCAI pp. 746–751, Vancouver, Canada (1981).

    Google Scholar 

  36. Pentland, A.P., “Local Shading Analysis,” IEEE Trans. PA1d1, Vol. PAMI-6, No. 2, pp. 170–187 (March 1984).

    Google Scholar 

  37. Pentland, A.P., “A New Sense for Depth of Field,” Proc. 9th IJCAI pp. 988–994, Los Angeles, California (August 1985).

    Google Scholar 

  38. Pratt, W.K., “Spatial Transform Coding of color Images,” IEEE Transactions on Communication Technology Vol. COM-19, No. 6, pp. 980–992 (December 1971).

    Google Scholar 

  39. Roberts, L.G., “Machine Perception of Three-Dimensional Solids,” 315, Lincoln Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts (1963). Also in Optical and Electro-Optical Information Processing J. Tippett et al. (eds), pp. 159–197 (MIT Press, 1965 ).

    Google Scholar 

  40. Rosen, C.A., “Machine Vision and Robotics: Industrial Requirements,” Computer Vision and Sensor-Based Robots, Dodd & Rossol, Eds. (Plenum Publishing Corporation, 1979 ).

    Google Scholar 

  41. Rosenfeld, A., and A.C. Kak, Digital Image Processing (Academic Press, New York, New York, 1976 ).

    Google Scholar 

  42. Shirai, Y., Robot Vision FGCS, PP. 325–352 (North Holland, 198).

    Google Scholar 

  43. Silberg, T.M., D. Harwood, and L.S. Davis, “Object Recognition Using Oriented Model Points,” Proc. 1st Conf. on Artificial Intelligence Applications IEEE (December 1984).

    Google Scholar 

  44. Sobel, I., “Camera Models and Machine Perception,” AIM-21, Stanford AI Laboratory, Stanford University, Stanford, California (May 1070).

    Google Scholar 

  45. Stevens, K.A., “Representing and Analyzing Surface Orientation,” in Artificial Intelligence An MIT Perspective Vol. 2, P.II.Winston and R.H.Brown (eds.) ( MIT Press, Cambridge, Massachusetts, 1979 ).

    Google Scholar 

  46. Tsuji, S. et al., “Wiresight: Robot Vision for Determining Three-Dimensional Geometry of Flexible Wires,” ‘83 International Conf. on Advanced Robotics pp. 133–138, Tokyo, Japan (September 12–13, 1983 ).

    Google Scholar 

  47. Witkin, A.P., “Recovering Surface Shape and Orientation from Texture,” Artificial Intelligence Vol. 17 (1981).

    Google Scholar 

  48. Woodham, R.J., “Photometric Stereo: A Reflectance Map Technique for Determining Surface Orientation from Image Intensity,” Proc 22nd. Int. Symp SPIE, pp. 136–143, San Diego, California (August 1978)

    Google Scholar 

  49. Woodham, R.J., “Analyzing Images of Curved Surfaces,” Artificial Intelligence Vol. 17, pp. 117–140 (1981).

    Google Scholar 

  50. Yang, H.S. and A.C. Kak, “Determination of the Identity. Position, and Orientation of the Topmost Object in a Pile: Some Further Experiments,” Proc. IEEE Int. Conf. on Robotics and Automation pp. 293–298, San Francisco, California (April 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nitzan, D., Bolles, R., Kremers, J., Mulgaonkar, P. (1987). 3-D Vision for Robot Applications. In: Wong, A.K.C., Pugh, A. (eds) Machine Intelligence and Knowledge Engineering for Robotic Applications. NATO ASI Series, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87387-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87387-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87389-8

  • Online ISBN: 978-3-642-87387-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics