Study of Dynamical Model of Ice Lattice in Order to Interpret the Low-Frequency Raman Spectrum

  • André Kahane
  • Pierre Faure


The structure of the oxygen atoms lattice in hexagonal ice corresponds to symmetry group D<Stack><Subscript>6h</Subscript><Superscript>4</Superscript></Stack> with four atoms A1, A2, A3, A4 in the unit cell (Fig. 1). The symmetry types of the principal normal modes of such a lattice are A1g, B1g, B2u, E- g, E+ g, and E+ u. The active modes in the first-order Raman effect are A1g, E- g and E+ g.


Raman Spectrum Dispersion Curve Brillouin Zone Inelastic Scattering Reciprocal Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Kahane, Thèse Paris (1962).Google Scholar
  2. 2.
    N. Ockman, Adv. in Phys. 7, 199 (1958).CrossRefGoogle Scholar
  3. 3.
    V.I. Val’kov and G.L. Malenkova, Opt. i Spectros. 1, 881 (1956).Google Scholar
  4. 4.
    P.A. Giguere and J.P. Arraudeau, C.R. Acad. Sc. Paris 257, 1692 (1963).Google Scholar
  5. 5.
    J.E. Bertie and E. Whalley, J. Chem. Phys. 46, 1271 (1967).CrossRefGoogle Scholar
  6. 6.
    F. Jona and P. Seherrer, Helv. Phys. Acta 29, 212 (1951).Google Scholar
  7. 7.
    H. Prask, H. Boutin and S. Yip, J. Chem. Phys. (to be published).Google Scholar
  8. 8.
    E. Forslind, Proc. Swedisch Cement and Concrete Res. Instr. 21, (1954).Google Scholar
  9. 9.
    Y. Nakahara, Jaeri — Memo n 3108, Japan Atomic Energy Research Institute (1968).Google Scholar
  10. 10.
    P. Faure and A. Kahane, J. Phys. 28, 944 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • André Kahane
    • 1
  • Pierre Faure
    • 1
  1. 1.Laboratoire de Spectrométrie Physique de la FacultéSciences de GrenobleFrance

Personalised recommendations