Laser pp 219-359 | Cite as

Der Gaslaser

  • D. Rosenberger

Zusammenfassung

Der Gedanke, elektromagnetische Wellen in einer Gasentladung mit negativem Absorptionskoeffizienten zu verstärken, wurde erstmals im Jahre 1939 von V. A. Fabrikant geäußert [1]. In einer Patentschrift desselben Autors aus dem Jahre 1951 wurden die Grenzen des dafür geeigneten Spektralbereichs, Radiofrequenzen im Langwelligen und Ultraviolett im Kurzwelligen, näher umrissen [2]. Obwohl der Vorschlag dabei gleichzeitig auf beliebige invertierte Medien ausgedehnt wurde, richteten Fabrikant und verschiedene Arbeitsgruppen am Lebedev-Institut ihr Hauptaugenmerk weiterhin auf die Verstärkung von Lichtfrequenzen in Gasen und metallischen Dämpfen. Es gelang ihnen, in verschiedenen Metalldampfgemischen (Cs—He, Hg—Zn) eindeutig Verstärkung für optische Frequenzen nachzuweisen [3, 4]. Erstaunlicherweise wurde jedoch kein Versuch unternommen, mit diesen invertierbaren Medien zu Laseroszillation zu gelangen. Unabhängig davon untersuchten Schawlow und Townes 1958 in einer theoretischen Arbeit die Anschwingbedingungen eines analog zum Maseroszillator arbeitenden Lichtoszillators [5], der aus einem Fabry-Perot-Resonator mit optisch gepumpten Kaliumdampf als verstärkendem Medium gebildet sein sollte. In einer Reihe von theoretischen Arbeiten wurden auch die Möglichkeiten studiert, durch elektrische Entladungen in reinen Gasen und Gasgemischen Besetzungsumkehr zu erhalten [6–13]. Neben der Inversion durch Elektronenstoß wurde von Javan [7, 8] dabei auch die selektive Besetzung durch Stöße zweiter Art in Zweikomponentengemischen in Betracht gezogen, die besonders im Helium-Neon-Gemisch erfolgversprechend erschien und auch wenig später den Betrieb des ersten kontinuierlich arbeitenden Gaslasers ermöglichte [14].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 6

  1. [1]
    Fabrikant, V. A.: Dissertation, Lebedev Institut, Akademie der Wissenschaften UdSSR (1939).Google Scholar
  2. [2]
    Fabrikant, V. A.: Patent Nr. 123209 v. 18. 6. 1951; veröff.: Byulleten Izobretenig 1959, S. 29 [genaues Zitat des Patentanspruchs bei S. KASSEL: Soviet laser research, Proc. IEEE 51 (1963) 216–218].Google Scholar
  3. [3]
    Btjtayeva, F. A., U. V. A. Fabrikant • Sammlung verschiedener Artikel in: Akad. Nauk. SSSR, Fiz. Inst. imeni P. N. Lebedeva Issledovaniya po eksp. i teoret. fiz. Sbornik (1959) 62–70.Google Scholar
  4. [4]
    Ablekov, V. K., M. S. Pesin U. I. L. Fabelinskii: The realization of a medium with negative absorption coefficient. Sov. Phys. JETP 12 (1961) 618–619; Russ. 39 (1960) 892–893.Google Scholar
  5. [5]
    Schawlow, A. L., u. C. H. TowNEs: Infrared and optical masers. Phys. Rev. 112 (1958) 1940–1949.ADSGoogle Scholar
  6. [6]
    Sanders, S. H.: Optical maser design. Phys. Rev. Letters 3 (1959) 86–87.ADSGoogle Scholar
  7. [7]
    Javan, A.: Possibility of production of negative temperature in gas discharges. Phys. Rev. Letters 3 (1963) 87–89.ADSGoogle Scholar
  8. [8]
    Javan, A., Possibility of obtaining negative temperature in atoms by electron impact. Quantum Electronics, ed. by C. H. Townes, New York: Columbia University Press 1960, 564–572.Google Scholar
  9. [9]
    Basov, N. G., u. O. N. Krokhin • Production of negative-temperature states by electron excitation in a gas mixture. Sov. Phys. JETP 12 (1961) 1240–1242, Russ. 39 (1960) 1777–1780.Google Scholar
  10. [10]
    Basov, N. G., u. O. N. Krohkin • Population inversion in a discharge in a mixture of two gases. Appl. Opt. 1 (1962) 213–216.Google Scholar
  11. [11]
    Fabrikant, V. A.: Negative absorption coefficient produced by discharges in a gas mixture. Soy. Phys. JETP 14, 2 (1961) 375–377; Russ. 41, 2 (1961) 524–527.Google Scholar
  12. [12]
    Fabrikant, V. A.: Acad. Nauk. USSR 26 (1962) 61.Google Scholar
  13. [13]
    Rautian, S. G., u. I. I. Sobelmai• Negative absorption in metal vapors. Soy. Phys. JETP 12 (1961) 156–158; Russ. 39 (1960) 217–219.Google Scholar
  14. [14]
    Javan, A., W. R. Bennett, JR., u. D. R. Herriott: Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Phys. Rev. Letters 6 (1961) 106–110.Google Scholar
  15. [15]
    Massey, H. S. W., u. E. H. S. Burhop: Electronic and ionic impact phenomena. Oxford: Clarendon Press 1952.Google Scholar
  16. [16]
    Bennet, JR., W. R.: Inversion mechanism in gas lasers. Appl. Opt., Supplement on Chemical lasers (1965) 14–20.Google Scholar
  17. [17]
    Bennett, JR., W. R., u. G. N. Mercer: Super-radiance, excitation mechanism, and quasi cw-oszillation in the visible Ar+ laser, Appl. Phys. Letters 4 (1964) 180–182.ADSGoogle Scholar
  18. [18]
    Bates, D. R., u. B. L. Moiaetwitsch: Proc. Phys. Soc. (London) A 67 (1954) 805; Bates, D. R., J. T. Lewis: Proc. Phys. Soc. A 68 (1955) 173; Bates, D. R.: Proc. Royal Soc. A 240 (1957), 437; A 243 (1957) 15; A 245 (1958) 299; Proc. Phys. Soc. A 68 (1959) 227.Google Scholar
  19. [19]
    Wada, J. Y., u. H. Heil: Electron energy spectra in neon, xenon and helium–neon laser discharges. IEEE J. Q. E. QE-1 (1965) 327–335.Google Scholar
  20. [20]
    Francis, G.: The glow discharge at low pressure, Handbuch der Physik, Band XXII, Berlin/Göttingen/Heidelberg: Springer 1956, S. 53–208.Google Scholar
  21. [21]
    Loeb, L. B.: Basic processes of gaseous electronics, Berkeley and Los Angeles: University of California Press 1955.Google Scholar
  22. [22]
    Aisenberg, S.: Multiple probe measurements in high frequency plasmas lasers. J. Appl. Phys. 35 (1964) 130–134.ADSGoogle Scholar
  23. [23]
    Verweij, W.: Probe measurements and determination of electron mobility in the positive column of low-pressure mercury-argon discharges. Thesis, Universität Utrecht 1960; veröff.: Philips Res. Report Suppl. 1–4.Google Scholar
  24. [24]
    Labuda, E. F., u. E. I. Gordon: Microwave determination of average electron energy and density in He–Ne discharges. J. Appl. Phys. 35 (1964) 1647–1648.ADSGoogle Scholar
  25. [25]
    Bekefi, G., J. L. Hirshfield u S C Brown: Kirchhoff’s radiation law for plasmas with non-Maxwellian distributions. Phys. Fluids 4 (1961) 173–176.MathSciNetADSGoogle Scholar
  26. [26]
    Dattner, A.: The plasma resonator. Ericson Technics 2 (1957), 309–350.Google Scholar
  27. [27]
    Young, R. T.: Calculation of average electron energies in He–Ne discharges. J. Appl. Phys. 36 (1965) 2324–2325.ADSGoogle Scholar
  28. [28]
    Aisenberg, S.: The effect of helium on electron temperature and electron density in rare gas lasers. Appl. Phys. Letters 2 (1963) 187–189.ADSGoogle Scholar
  29. [29]
    Massey, J. T., A. G. Schulz, S. M. Cannon U. B. F. Hochheimer: Relationship of electron parameters to external electric parameters in a radio-frequency excited helium–neon discharge. J. Appl. Phys. 36 (1965) 1790–1791.ADSGoogle Scholar
  30. [30]
    Mielenz, K. D., u. K. F. Nefflen: Gas mixtures and pressures for optimum output power of rf-excitet helium–neon gas lasers at 632,8 gm. Appl. Optics 4 (1965) 565–567.ADSGoogle Scholar
  31. [31]
    George, N.: Improved population inversion in gaseous lasers. Proc. IEEE 51 (1963) 1152 —1153.Google Scholar
  32. [32]
    Rosenberger, D.: Der Gaslaser. Z. angew. Phys. 17 (1964) 7–10.Google Scholar
  33. [33]
    Ahmed, S. A., u. R. Kocher: Microwave electron resonance pumping of a gaslaser. Proc. IEEE 52 (1964) 1737.Google Scholar
  34. [34]
    Tien, P. K., D. Macnair u. H. C. Hodges: Electron beam excitation of gas laser transitions and measurements of cross sections of excitation. Phys. Rev. Letters 12 (1964) 30–33.ADSGoogle Scholar
  35. [35]
    Holstein, T.: Phys. Rev. 72 (1947) 1212; 83 (1951) 1159.Google Scholar
  36. [36]
    Bates, D. R., u. A. Damgaard: Phil. Trans. A 242 (1950) 101.ADSGoogle Scholar
  37. [37]
    Bennett, JR., W. R., P. J. Kindlmann U. G. N. Mercer: Measurement of excited state relaxation rates. Appl. Opt. Supplement on Chemical Lasers (1965) 34–57.Google Scholar
  38. [38]
    Hänsch, T., u. P. Toschek: Measurement of neon atomic level parameters by laser differential spectrometrie. Phys. Letters 20 (1966) 273–275.ADSGoogle Scholar
  39. [39]
    Benton, E. E., E. E. Ferguson, F. A. Marsen U. W. W. Robertson: Cross sections for the-excitation of helium metastable atoms by collisions with atoms. Phys. Rev. 128 (1962) 206–209.ADSGoogle Scholar
  40. [40]
    Massey, J. T., A. G. Schulz, B. F. Hochheimer u S. M. Cannon: Resonanz energy transfer studies in a helium–neon gas discharge. J. Appl. Phys. 36 (1965) 658–659.ADSGoogle Scholar
  41. [41]
    Bennett, W. R., JR., u. P. J. Kindlmann: Radiative and collision-induced relaxation of atomic states in the 2p5 3p configuration of neon. Phys. Rev. 149 (1966) 38–51.Google Scholar
  42. [42]
    Biondi, M. A.: Phys. Rev. 88 (1952) 660.ADSGoogle Scholar
  43. [43]
    White, A. D., u. E. I. Gordon: Excitation mechanism and current dependence of population inversion in He–Ne lasers. Appl. Phys. Letters 3 (1963) 197–199.ADSGoogle Scholar
  44. [44]
    Parks, J. H., A. Szöke u. A. Javan: Study of collision-excitation transfer in neon, using He–Ne maser. Bull. Am. Phys. Soc. II, 9 (1964) 490.Google Scholar
  45. [45]
    Fork, R. L., L. E. Hargrove U. M. A. Pollack: Population pulsation and lifetimes in He–Ne lasers. Appl. Phys. Letters 5 (1964) 5.ADSGoogle Scholar
  46. [46]
    White, A. D.: Anomalous behaviour of the 6402,84 A gas laser. Proc. IEEE 52 (1964) 721.Google Scholar
  47. [47]
    Bennett, JR., W. R., P. J. Kindlmann u. G. N. Mercer: Measurement Of excited state relaxation rates. Appl. Opt. Suppl. on Chemical Lasers (1965) 34–57.Google Scholar
  48. [48]
    Klose, J. Z.: Atomic lifetimes in neon I. Phys. Rev. 141 (1966) 181–186.ADSGoogle Scholar
  49. [49]
    Koster, G. F., u. H. Statz: Probabilities for the neon laser transitions. J. Appl. Phys. 32 (1961) 2054.Google Scholar
  50. [50]
    Cordover, R. H., A. Szöke u. A. Javan: Resonance experiments on the excited states of neon. Bull. Am. Phys. Soc. II, 9 (1964) 490.Google Scholar
  51. [51]
    Mcfarlane, R. A., C. K. Patel U. W. R. Bennett, JR.: New He–Ne optical maser transitions. Proc. IEEE 50 (1962) 2111–2112.Google Scholar
  52. [52]
    Rigden, J. D., u. A. D. White: The interaction of visible and infrared maser transitions in the helium–neon system. Quantum Electronics I, ed. by P. Grivet, N. Bloembergen, New York: Columbia University Press 1964, S. 499–505; Proc. IEEE 51 (1963) 943–945.Google Scholar
  53. [53]
    White, A. D., u. J. D. Ridgen: Continuous gas maser operation in the visible. Proc. IRE 50 (1962) 1697.Google Scholar
  54. [54]
    Der Agobian, R., J.-L. Otto, R. Echard u. R. Cagnard: Emission stimulée de nouvelles transitions infrarouges du néon. Compt. Rend. 257 (1963) 3844–3847.Google Scholar
  55. [55]
    Zitter, R. N.: 2s-2p and 3p-2s transitions of neon in a laser ten meters long. J. Appl. Phys. 35 (1964) 3070–3071.ADSGoogle Scholar
  56. [56]
    Bennett, JR., W. R., u. J. W. Knutson, JR.: Simultaneous laser oscillation on the neon doublet at 1,1523 microns. Proc. IEEE 52 (1964) 861.Google Scholar
  57. [57]
    Severin, P. J.: The quenching of light by microwave incident on a negative glow plasma in a cold cathode glow discharge in a helium–neon mixture. Phys. Letters 9 (1964) 129.ADSGoogle Scholar
  58. [58]
    Bloom, A. L., u. R. C. Rempel: Laser operation at 3,39 µm in a helium–neon mixture. Appl. Opt. 2 (1963) 317–318.ADSGoogle Scholar
  59. [59]
    Bloom, A. L.: Observation of new visible gas laser transitions by removal of dominance. Appl. Phys. Letters 2 (1963) 101–102.ADSGoogle Scholar
  60. [60]
    White, A. D., u. J. D. Ridden: The effect of super-radiance at 3,39 µm on the visible transitions in the He—Ne maser. Appl. Phys. Letters 2 (1963) 211–212.ADSGoogle Scholar
  61. [61]
    Moore, C. B.: Gas-laser frequency selection by molecular absorption. Appl. Opt. 4 (1965) 252–253.Google Scholar
  62. [62]
    Bloom, A. L., u. D. L. Hardwick: Operation of He—Ne Laser in the fordbidden resonator region. Phys. Letters 20 (1966) 373–374.ADSGoogle Scholar
  63. [63]
    BtrlamacciI, P., u. G. Toraldo DI Francia: Selection of the 6401 A line in a He—Ne laser with hemispherical geometrie. Il Nuovo Cimento 42B (1) (1966) 186–188.Google Scholar
  64. [64]
    Rosenberger, D.: Schwingverhalten und Wechselwirkung der 0,63 p.m und 3,39 µnì Oszillationen bei einem He—Ne-Laser mit kleinem Spiegelabstand. Phys. Letters 8 (1964) 187–189.ADSGoogle Scholar
  65. [65]
    Cagnard, R., R. Der Agobian, R. Echard U. J.-L. Otto: L’emission stimulée de quelques transitions infrarouges de l’hélium et du néon. Compt. Rend. 257 (1963) 1044 bis 1047.Google Scholar
  66. [66] Gerritsen, H. J., u. P. V. Goedertier: A gaseous (He—Ne)
    cascade laser. Appl. Phys. Letters 4 (1964) 20.Google Scholar
  67. [67]
    Rosenberger, D.: Oscillation of three 3p-2s transistions in a He—Ne laser. Phys. Letters 9 (1964) 29–31.ADSGoogle Scholar
  68. [68]
    Grudzinsky, R., M. Paillette u. J. Becrelle: Étude de transitions laser couplées dans mélange hélium—néon. Compt. Rend. 258 (1964) 1452–1454.Google Scholar
  69. [69]
    Der Agobian, R., J. L. Otto, R. Cagnard u. R. Echard: New Ne laser transitions in the near infrared. J. Appl. Phys. 35 (1964) 2787.Google Scholar
  70. [70]
    Rigden, J. D., u. A. D. White: Simultaneous gas maser action in the visible and infrared. Proc. IRE 50 (1962) 2366–2367.Google Scholar
  71. [71]
    Grudzinski, R., u. J. Spalter: Utilisation d’un laser à gaz pour l’étude de l’amplification d’un melange gazeux. Quantum Electronics I, ed. by P. Grivet, N. Bloembergen, New York: Columbia University Press 1964, 515–521.Google Scholar
  72. [72]
    Bennett, JR., W. R.: Gaseous optical masers. Appl. Opt. Suppl. on Optical Masers 1 (1962) 24–61.Google Scholar
  73. [73]
    Herziger, G., W. Holzapfel U. W. Seelig: Verstärkung einer He-Ne-Gasentladung für die Laserwellenlänge d = 6328 AE. Z. Phys. 189 (1966) 385–400.ADSGoogle Scholar
  74. [74]
    Spiller, E.: Experimental investigations on gain and maximum output of the He—Ne laser. Z. Phys. 182 (1965) 487–498.ADSGoogle Scholar
  75. [75]
    Gordon, E. I., u. A. D. White: Similarity laws for the effects of pressure and discharge diameter on gain of He—Ne lasers. Appl. Phys. Letters 3 (1963) 199–201.ADSGoogle Scholar
  76. [76]
    White, A. D.: Increased power output of the 6328 A gas maser. Proc. IEEE 51 (1963) 1669.Google Scholar
  77. [77]
    Moeller, G. K., u. T. K. Mccubbin, JR.: Study of helium—neon laser amplification at 3,39 µm. Appl. Opt. 4 (1965) 1412–1415.ADSGoogle Scholar
  78. [78]
    Szöke, A. u. A. Javan: Isotope shift and saturation behaviour of the 1,15 µ transition of Ne. Phys. Rev. Letters 10 (1963) 521–524.ADSGoogle Scholar
  79. [79]
    Cordover, R. H., T. S. Jaseja u. A. Javan: Isotope shift measurement for 6328 A He—Ne laser transition. Appl. Phys. Letters 7 (1965) 322–324.ADSGoogle Scholar
  80. [80]
    Petrash, G. G., u. I. N. Knyazev: Study of pulsed laser generation in neon and in mixtures of neon and helium. Soy. Phys. JETP 18 (1964) 571, in Russ. 45 (1963) 833.Google Scholar
  81. [81]
    CLUNIE, D. M., u. N. H. ROCK: Optical gain in neon and helium/neon pulsed discharges. Phys. Letters 13 (1964) 213–214.ADSGoogle Scholar
  82. [82]
    Koboyashi, S., H. Okamoto u. M. Kan1iyama: Characteristics of a pulsed high-pressure He—Ne laser. IEEE J. Q. E. QE-1 (1965) 222–223.Google Scholar
  83. [83]
    Toyoda, K. u. C. Yamanaka: Enhanced lasing of the high pressure He—Ne laser. IEEE J. Q. E. QE-1 (1965) 281–283.Google Scholar
  84. [84]
    Smith, P. W.: Linewidth and saturation parameters for the 6328 A transition in a He—Ne laser. J. Appl. Phys. 37 (1966) 2089–2093.ADSGoogle Scholar
  85. [85]
    Smith, P. W.: The output power of a 6328 A He—Ne gaslaser. IEEE J Q. E. QE-2 (1966) 62–68.Google Scholar
  86. [86]
    Handbookof Mathematical Functions: M. ABRAMOWITZ and I. A. STEGUN, Eds., Washington/D. C.: National Bureau of Standards (1964) 297–330.Google Scholar
  87. [87]
    SMITH, P. W.: On the optimum geometric of a 6328 A laser oscillator. IEEE J. Q. E. QE-2 (1966) 77–79.Google Scholar
  88. [88]
    Fork, R. L., u. M. A. Pollack: Mode competition and collision effects in gaseous optical masers. Phys. Rev. 139 (1965) A 1408–1414.Google Scholar
  89. [89]
    Fork, R. L., D. R. Herriott U. H. Kogelnik: A scanning spherical mirror interferometer for spectral analysis of laser radiation. Appl. Opt. 3 (1964) 1471–1484.ADSGoogle Scholar
  90. [90]
    Golsborough, J. P.: Beat frequencies between modes of a concave-mirror optical resonator. Appl. Opt. 3 (1964) 267–275.ADSGoogle Scholar
  91. [91]
    Faust, W. L., u. R. A. MCFARLANE: Line strengths for noble-gas maser transitions; calculations of gain/inversion at various wavelenghhs. J. Appl. Phys. 35 (1964) 2010 bis 2015.Google Scholar
  92. [92]
    Mcclure, R. E.: Mode locking behavior of gas lasers in long cavities. Appl. Phys. Letters 7, 6 (1965) 148–150.ADSGoogle Scholar
  93. [93]
    Delang, H., G. Bouwnuis u. E.T. FERGUSON: Saturation-induced anisotropy in a gaseous medium in zero magnetic field. Phys. Letters 19, 6 (1965) 482–484.ADSGoogle Scholar
  94. [94]
    Polder, D., u. W. van Haeringen: The effect of saturation on the ellipticity of modes in gas lasers. Phys. Letters 19, 5 (1965) 380–381.ADSGoogle Scholar
  95. [95]
    Culshaw, W., u. J. Kannelaud: Coherence effects in gaseous lasers with axial magnetic fields. I. Theoretical. Phys. Rev. 141, 1 (1966) 228–236.Google Scholar
  96. [96]
    Kannelaud, J., u. W. Culshaw: Coherence effects in gaseous lasers with axial magnetic fields. II. Experimental. Phys. Rev. 141, 1 (1966) 237–245.Google Scholar
  97. [97]
    Doyle, M., u. M. B. White: Frequency splitting and mode competition in a dual-polarization He—Ne gas laser. Appl. Phys. Letters 5, 10 (1964) 193–195.ADSGoogle Scholar
  98. [98]
    Ahmed, S. A., R. C. Kocher u. H. J. Gerritsen: Gas lasers in magnetic fields. Proc. IEEE 52 (1964) 1356–1357.Google Scholar
  99. [99]
    Skolnick, M. L., T. G. Polanyi u. 1. Tobias: The measurement of magnetically induced mode splitting in lasers. Phys. Letters 19, 5 (1965) 386–387.ADSGoogle Scholar
  100. [100]
    Heer, C. V., u. R. D. Graft: Theory of magnetic effects in optical maser amplifiers and oscillators. Phys. Rev. 140 (1965) A 1088—A 1104.Google Scholar
  101. [101]
    Fork, R. L., u. M. Sargent, III: Mode competition and frequency splitting in magneticfield-tuned optical masers. Phys. Rev. 139 (1965) A 617—A 618.Google Scholar
  102. [102]
    D’yakonov, M. I.: On the theory of the gas laser in a weak longitudinal magnetic field. Soy. Phys. JETP 22, 4 (1966) 812–819.ADSGoogle Scholar
  103. [103]
    Culshaw, W., u. J. Kannelaud: Effects of transverse and axial magnetic fields on gaseous lasers. Phys. Rev. 145, 1 (1966) 257–267.ADSGoogle Scholar
  104. [104]
    Pelikan, H.: Frequency and polarization locking phenomena in a laser with axial magnetic field. Phys. Letters 21, 6 (1966) 652–653.ADSGoogle Scholar
  105. [105]
    Kannelaud, J., u. W. Culshaw: Interaction between the axial modes of a Zeeman laser. Appl. Phys. Letters 9, 3 (1966) 120–123.ADSGoogle Scholar
  106. [106]
    Bochasten, K., T. Lundholm u. O. Andrade: Laser lines in atomic and molecular hydrogen. J. Opt. Soc. Am. 56, 9 (1966) 1260–1261.Google Scholar
  107. [107]
    MARSHALL, T. C.: De-activation of neon metastables by 112, Plasma Laboratory, Report No. 8, Columbia University, New York 1964.Google Scholar
  108. [108]
    Faust, W. L., R. A. Mcfarlane, C. K. N. Patel u. C. G. D. Garrett: Gas maser spectroscopy in the infrared. Appl. Phys. Letters 1 (1962) 85–88.ADSGoogle Scholar
  109. [109]
    Patel, C. K. N., W. R. Bennett, JR., W. L. Faust u. R. A. Mcfarlane: Infrared spectroscopy using stimulated emission techniques. Phys. Rev. Letters 9 (1962) 102 bis 104.Google Scholar
  110. [110]
    Faust, W. L., R. A. Mcfarlane, C. K. N. Patel u. C. G. B. Garrett: Noble gas optical maser lines at wavelengths between 2 and 35 microns. Phys. Rev. 133 (1964) A 1476 —1486.Google Scholar
  111. [111]
    Patel, C. K. N., W. L. Faust, R. A. Mcfarlane u. C. G. B. Garrett: Laser action up to 57,355 microns in gaseous discharges (Ne, He-He). Appl. Phys. Letters 4 (1964) 18–19.Google Scholar
  112. [112]
    Mcfarlane, R. A., W. L. Faust, C. K. N. Patel u. C. G. B. Garrett: Neon gas maser lines at 68,329 microns and 85,047 microns. Proc. IEEE 52 (1964) 318.Google Scholar
  113. [113]
    Patel, C. K. N., W. L. Faust, R. A. Mcfarlane u. C. G. B. Garrett: Ceti optical maser action up to 133 microns (0,133 mm) in neon discharges. Proc. IEEE 52 (1964) 713.Google Scholar
  114. [114]
    Brochard, J., u. S. Liberman: Emission stimule de nouvelles transitions infrarouges lhélium et du néon. Compt. Rend. 260 (1965) 6827–6829.Google Scholar
  115. [115]
    Patel, C. K. N., Faust, W. L., u. R. A. Mcfarlane: High gain gaseous (Xe—He) optical masers. Appl. Phys. Letters 1 (1962) 84–85.Google Scholar
  116. [116]
    Paananen, R. A., u. D. L. Bobroff: Very high gain gaseous (Xe-He) optical maser optical maser at 3,5 p. Appl. Phys. Letters 2 (1963) 99–100.Google Scholar
  117. [117]
    Bridges, W. B.: High optical gain at 3,5 II in pure xenon. Appl. Phys. Letters 3 (1965) 45–47.ADSGoogle Scholar
  118. [118]
    Liberman, S.: Emission stimulée de nouvelles transitions infrarouges de l’argon, du krypton et du xenon. Compt. Rend. 261 (1965) 2601–2604.Google Scholar
  119. [119]
    Walter, W. T., u. S. M. Jarrett: Strong 3,27 micron laser oscillation in xenon. Appl. Opt. 3 (1964) 789.Google Scholar
  120. [120]
    Grosof, G., u. R. Targ: Enhancement in mercury-krypton and xenon-krypton gaseous discharges. Appl. Opt. 2 (1963) 299–302.ADSGoogle Scholar
  121. [121]
    BRUNETT, H.: Laser gain measurements in a xenon—krypton discharge. Appl. Opt. 4 (1965) 1354.Google Scholar
  122. [122]
    Clark, PO: Investigation of the operating eharacterictics of a 3,5 tot xenon laser. IEEE J. Q. E. QE-1 (1965) 109–113.Google Scholar
  123. [123]
    Klüver, J. W.: Laser amplifier noise at 3,5 microns in helium-xenon. J. Appl. Phys. 37, 8 (1966) 2987–2999.Google Scholar
  124. [124]
    Paananen, R. A., C. L. Tang u. F. A. Horrigan: Laser action in Cl2 and HeC12. Appl. Phys. Letters 3, 9 (1963) 154.ADSGoogle Scholar
  125. [125]
    Paananen, R. A., u. F. A. Horrigan: Near infrared lasering in NeC12 and HeC12. Proc. IEEE 52, 10 (1964) 1261.Google Scholar
  126. [126]
    Bookasten, K.: On the classification of laser lines in chlorine and iodine. Appl. Phys. Letters 4, 7 (1964) 118.ADSGoogle Scholar
  127. [127]
    Jarrett, S. M., J. Nunez u. G. Gould: Infrared laser oscillation in HBr and H[gas discharges. Appl. Phys. Letters 7, 11 (1965) 294–296.ADSGoogle Scholar
  128. [128]
    Jarrett, S. M., J. Nunez u. G. Gould: Laser oscillation in atomic Cl and I in the HCl and HI gas discharges. Appl. Phys. Letters 8, 6 (1966) 150–151.ADSGoogle Scholar
  129. [129]
    Patel, C. K. N., R. A. Mcfarlane u. W. L. Faust: Optical maser action in C, N, 0, S and Br on dissociation of diatomic or polyatomic molecules. Phys. Rev. 133 (1964) A 1244.Google Scholar
  130. [130]
    Tunitsky, L. N., u. E. M. Cherkasov: Interpretation of oscillation lines in Ar—Br2 laser. J. Opt. Soc. Am. 56, 12 (1966) 1783–1784.Google Scholar
  131. [131]
    Bennett, JR., W. R., W. L. FAUST, R. A. MCFARLANE U. C. K. N. PATEL: Dissociative excitation transfer and optical maser oscillation in Ne-02 and Ar-02 discharges. Phys. Rev. Letters 8 (1963) 470–474.ADSGoogle Scholar
  132. [132]
    Jacobs, G. B.: Oxygen laser aging characteristics. Proc. IEEE 52 (1964) 1259.Google Scholar
  133. [133]
    Shimazu, M., u. Y. Suzaki: On the new laser oscillations in He—N2, Ne—N2, He-air, Ne-air, He—0O2 and Ne—0O2 discharges. Japan J. Appl. Phys. 3 (1964) 561.Google Scholar
  134. [134]
    Saimazu, M., u. Y. Suzaki: Laser oscillations in silicon tetrachloride vapor. Japan J. Appl. Phys. 4, 10 (1965) 819.Google Scholar
  135. [135]
    Doyle, W. M.: Use of time resolution in identifying laser transitions in a mercury-rare gas discharge. J. Appl. Phys. 35 (1964) 1348–1349.ADSGoogle Scholar
  136. [136]
    Rigden, J. D., u. A. D. White: Optical maser action in iodine and mercury discharges. Nature 198 (1963) 774.Google Scholar
  137. [137]
    Paananen, R. A., C. C. Tang, F. A. Horrigan U. H. Statz: Optical maser action in He—Hg RF discharges. J. Appl. Phys. 34 (1963) 3148.ADSGoogle Scholar
  138. [138]
    Fowles, G. R., u. W. T. Silfvast: High-gain laser transition in lead vapor. Appl. Phys. Letters 6 (1965) 236–237.Google Scholar
  139. [139]
    Piltch, M., W. T. Walter, N. Solimene, G. GOULD U. W. R. BENNETT, JR.: Pulsed laser transitions in manganese vapor. Appl. Phys. Letters 7 (1965) 309–310.ADSGoogle Scholar
  140. [140]
    WALTER, W. T., M. PILTCH, N. SOLIMENE u. G. GOULD: Pulsed laser action in atomic copper vapor. Bull. Am. Phys. Soc. 11 (1966) 113.Google Scholar
  141. [141]
    Walter, W. T., N. Solrmene, M. Piltch u. G. Gould: Efficient pulsed gas discharge lasers. IEEE J. Q. E. QE-2, 9 (1966) 474–479.ADSGoogle Scholar
  142. [142]
    Heard, H. G., u. J. Petersen: Super-radiant yellow and organge laser transitions in pure neon. Proc. IEEE 52 (1964) 1258.Google Scholar
  143. [143]
    Rosenberger, D.: Laserübergänge und Superstrahlung bei 6143 A und 5944 A in einer gepulsten Neon-Entladung. Phys. Letters 13 (1964) 228–229.ADSGoogle Scholar
  144. [144]
    Clunie, D. M., R. S. A. Thorn u. K. E. Trezise: Asymetric visible super-radiant emission from a pulsed neon discharge. Phys. Letters 14 (1965) 28–29.ADSGoogle Scholar
  145. [145]
    Rosenberger, D.: Superstrahlung in gepulsten Argon-, Krypton-und Xenon-Entladungen. Phys. Letters 14 (1965) 32.ADSGoogle Scholar
  146. [146]
    Leonard, D. A., R. A. Neal u. E. T. Gerry: Oberservation of a super-radiant self-terminating green laser transition in neon. Appl. Phys. Letters 7 (1965) 175.ADSGoogle Scholar
  147. [147]
    Mcfarlane, R. A., W. L. Faust U. C. K. N. Patel: Oscillations on f–d transitions in neon in a gas optical maser. Proc. IEEE 51, 3 (1963) 468.Google Scholar
  148. [148]
    Goldsborough, J. P., E. B. Hodges U. W. E. Bell: RF Induction excitation of cw visible laser transitions in ionized gases. Appl. Phys. Letters 8, 6 (1966) 137–139.ADSGoogle Scholar
  149. [149]
    Bell, W. E.: Ring discharge excitation of gas ion lasers. Appl. Phys. Letters 7, 7 (1965) 190–191.ADSGoogle Scholar
  150. [150]
    Bridges, W. B., u. A. N. Chester: Spectroscopy of ion lasers. IEEE J. Q. E. QE-1,1965) 66–84.Google Scholar
  151. [151]
    Bell, W. E.: Visible laser transitions in Hgl-. Appl. Phys. Letters 4 (1964) 34–35.ADSGoogle Scholar
  152. [152]
    Bridges, W. B.: Laser oscillation in singly ionized argon in the visible spectrum. Appl. Phys. Letters 4 (1964) 128–130.ADSGoogle Scholar
  153. [153]
    Convert, G., M. Armand u. P. Martinot-Lagarde: Effet laser dans des mélanges mercure-gaz rares. Compt. Rend. 258 (1964) 3259–3260.Google Scholar
  154. [154]
    Convert, G., M. Armand u P Martinot-Lagarde: Transitions laser visibles dans l’argon ionisé. Compt. Rend. 258 (1964) 4467–4469.Google Scholar
  155. [155]
    Bennett, JR., W. R., J. W. Knutson, JR., G. N. Mercer U. J. L. Detch: Super-radiance, excitation mechanisms, and quasi-cw oscillation in the visible Ar+ laser. Appl. Phys. Letters 4 (1964) 180–182.Google Scholar
  156. [156]
    Bridges, W. B.: Laser action in singly ionized krypton and xenon. Proc. IEEE 52 (1964) 843–844.Google Scholar
  157. [157]
    Bloom, A. L., W. E. Bell U. F. O. Lopez: Laser spectroscopy of a pulsed mercury-helium discharge. Phys. Rev. 135 (1964) A 578—A 579.Google Scholar
  158. [158]
    Gerritsen, H. J., u. P. V. Goedertier: Blue gas laser using Hg24-. J. Appl. Phys. 35 (1964) 3060–3061.ADSGoogle Scholar
  159. [159]
    Gordon, E. I., E. F. Labuda u. W. B. BRIDGES: Continuous visible laser action in singly ionized argon, krypton and xenon. Appl. Phys. Letters 4 (1964) 178–180.ADSGoogle Scholar
  160. [160]
    Gordon, E. I., u. E. F. Labuda: Gas pumping in continuously operated ion lasers. Bell Syst. Techn. J. 43 (1964) 1827–1829.Google Scholar
  161. [161]
    Der Agobian, R., J. L. Otto, R. Cagnard, J. Barthélémy u. R. ECHARD: Émission stimulée en régime permanent dans le spectre visible du krypton ionisé. Compt. Rend. 260 (1965) 6327–6329.Google Scholar
  162. [162]
    Mcfarlane, R. A.: Laser oscillation on visible and ultraviolet transistions of singly and multiply ionized oxygen, carbon, and nitrogen. Appl. Phys. Letters 5 (1964) 91–93.ADSGoogle Scholar
  163. [163]
    Bridges, W. B., u. A. N. Chester: Visible and UV laser oscillation at 118 wavelengths in ionized neon, argon, krypton, xenon, oxygen and other gases. Appl. Opt. 4 (1965) 573–580.ADSGoogle Scholar
  164. [164]
    Fowles, G. R., u. R. C. Jensen: Visible laser transitions in the spectrum of singly ionized iodine. Proc. IEEE 52 (1964) 851–852.Google Scholar
  165. [165]
    Fowles, G. R., u. R. C. Jensen: Visible laser transitions in ionized iodine. Appl. Opt. 1964) 1191–1192.Google Scholar
  166. [166]
    Mcfarlane, R. A.: Optical maser oscillation on iso-electronic transitions in Ar III and Cl II. Appl. Opt. 3 (1964) 1196.Google Scholar
  167. [167]
    Laures, P., L. Dana u. C. Fratard: Nouvelles transitions laser dans le domaine 0,42–0,52 la obtenues à partir du spectre du krypton ionisé. Compt. Rend. 258 (1964) 6363–6365.Google Scholar
  168. 23.
    Kleen/Müller, LaserGoogle Scholar
  169. [168]
    Laures, P., L. Dana U. C. Frapard: Nouvelles raies laser visibles dans le xenon ionisé. Compt. Rend. 259 (1964) 745–747.Google Scholar
  170. [169]
    Dana, L., u. P. Laures: Stimulated emission in krypton and xenon ions by collisions with metastable atoms. Proc. IEEE 53 (1965) 78–79.Google Scholar
  171. [170]
    Cheo, P. K., u. H. G. Cooper: Ultraviolet ion laser transitions between 2300 A and 4000 A. J. Appl. Phys. 36 (1965) 1862–1865.ADSGoogle Scholar
  172. [171]
    Sinclair, D. C.: Near-infrared oscillation in pulsed noble gas ion lasers. J. Opt. Soc. Am. 55 (1965) 571–572Google Scholar
  173. [172]
    Dana, L., P. Laures u. R. Rocherolles: Raies laser ultraviolettes dam le neon, l’argon et le xenon. Compt. Rend. 260 (1965) 481–484.Google Scholar
  174. [173]
    Horrigan, F. A., S. H. Koozekanani U. R. A. Paananen: Infrared laser action and lifetimes in argon II. Appl. Phys. Letters 6 (1965) 41–43.ADSGoogle Scholar
  175. [174]
    Jensen, R. C., u. G. R. Fowles: New laser transitions in iodine-inert gas mixtures. Proc. IEEE 52 (1964) 1350.Google Scholar
  176. [175]
    Paananen, R.: Continuously-operated ultraviolet lasers. Appl. Phys. Letters 9 (1966) 34–35.ADSGoogle Scholar
  177. [176]
    Bell, W. E., A. L. Bloom u. J. P. Goldsborough: Visible laser transitions in ionized selenium, arsenic, and bromine. IEEE J. Q. E. (1965) 400.Google Scholar
  178. [177]
    Zarowin, C. B.: New visible ew laser lines in singly-ionized chlorine. Appl. Phys. Letters 9 (1966) 241–242.ADSGoogle Scholar
  179. [178]
    Rudko, R. I., u. C. L. Tang: Effects of cascade in the excitation of the Ar II laser. Appl. Phys. Letters 9 (1966) 41–44.ADSGoogle Scholar
  180. [179]
    Ballik, E. A., W. R. Bennett, JR., U. G. N. Mercer: Temperatures, Lorentzian widths, and drift velocities in the argon-ion laser. Appl. Phys. Letters 8 (1966) 214 bis 216.Google Scholar
  181. [180]
    Bennett, JR., W. R., E. A. Ballik u G. N. Mercer: Spontaneous-emission line shape of ion laser transitions. Phys. Rev. Letters 16 (1966) 603–605.Google Scholar
  182. [181]
    Bloom, A. L., R. L. Byer u. W. E. Bell: Emission line widths of ion lasers. Phys. Quant. Electr., New York: McGraw-Hill 1966, S. 688–689.Google Scholar
  183. [182]
    Bloom, A. L.: Gas lasers. Proc. IEEE 54 (1966) 1262.Google Scholar
  184. [183]
    Statz, H., F. A. Horrigan U. S. H. Koozekanani: Transition probabilities for some Ar II laser lines. J. Appl. Phys. 36 (1965) 2278–2286.ADSGoogle Scholar
  185. [184]
    Bennett, JR., W. R., P. J. Kindlmann, G. N. Mercer u. J. Sunderland: Relaxation rates of the Ar+ laser levels. Appl. Phys. Letters 5 (1964) 158–160.Google Scholar
  186. [185]
    Bakos, J., J. Szigeti u. L. Varga: The lifetimes of ionized argon states. Phys. Letters 20 (1966) 503–504.ADSGoogle Scholar
  187. [186]
    Gordon, E. I., E. F. Labuda, R. C. Miller u C E Webb: Excitation mechanisms of the argon ion laser, Phys. of Quant. Electr., New York: McGraw-Hill 1966, S. 664–673.Google Scholar
  188. [187]
    Labuda, E. F., E. I. Gordon u. R. C. Miller: Continuous-duty argon ion lasers. IEEE J. Q. E. QE-1 (1965) 273–279.Google Scholar
  189. [188]
    CHEO, P. K., u. H. G. Cooper: Evidence for radiation trapping as a mechanism for quenching and ring-shaped beam formation in ion lasers. Appl. Phys. Letters 6 (1965) 177 —178.Google Scholar
  190. [189]
    Gorog, I., u. F. W. Spong: High pressure, high magnetic field effects in continuous argon lasers. Appl. Phys. Letters 9 (1966) 61–63.ADSGoogle Scholar
  191. [190]
    Rosenberger, D.: Schwingverhalten eines kurzen Ar+-Lasers und Wechselwirkung zweier gekoppelter Schwingungen. Entwicklungsb. Siemens und Halske, 27. Jg. (1964) 299–301.Google Scholar
  192. [191]
    Rosenberger, D.: Anomale Wechselwirkung von gekoppelten Schwingungen im koutinuierlichen Argon-Ionen-Laser. Phys. Letters 22 (1966) 54–55.ADSGoogle Scholar
  193. [192]
    Rigrod, W. W., u. T. J. Bridges: Bistable traveling-wave oscillations of ion ring laser. IEEE J. Q. E. QE-1 (1965) 298–303.Google Scholar
  194. [193]
    Bridges, T. J., u. W. W. Rigrod: Output spectra of the argon ion laser. IEEE J. Q. E. QE-i (1965) 303–308.Google Scholar
  195. [194]
    Neusel, R. H.: Gas pumping in repetitively pulsed ion lasers. IEEE J. Q. E. QE-2, 8 (1966) 331–333.ADSGoogle Scholar
  196. [195]
    Paananen, R. A.: Progress in ionized-argon lasers. IEEE Spectrum 3, 6 (1966) 88–89.Google Scholar
  197. [196]
    Gaddy, O. L., u. E. M. Schaefer: Self-locking modes in the argon ion laser. Appl. Phys. Letters 9, 8 (1966) 281–282.ADSGoogle Scholar
  198. [197]
    Mercer, G. N., V. P. Chebotayev U. W. R. Bennett, JR.: Radial drift velocities in the argon ion laser. Appl. Phys. Letters 10, 6 (1967) 177–179.ADSGoogle Scholar
  199. [198]
    HERNQVIST, K. G., u. J. R. FENDLY, JR.: Construction of long life argon lasers. IEEE J. Q. E. QE-3 (1967) 66–72.Google Scholar
  200. [199]
    Bennett, JR., W. R., G. N. Mercer, P. J. Kindlmann, B. Wxler U H. Hyman: Direct electron excitation cross sections pertinent to the argon ion laser. Phys. Rev. Letters 17, 19 (1966) 987–991.ADSGoogle Scholar
  201. [200]
    Wieder, I., u. G. B. Mccurdy: Isotope shifts and the role of fermi resonance in the CO2 infrared maser. Phys. Rev. Letters 16, 13 (1966) 565–567.ADSGoogle Scholar
  202. [201]
    Mccurdy, G. B., u. I. Wieder: Generation of new infrared maser frequencies by isotopic substitution. IEEE J. Q. E. QE-2, 9 (1966) 385–387.ADSGoogle Scholar
  203. [202]
    Patel, C. K. N.: Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys. Rev. 136 (1964) A 1187—A 1193.Google Scholar
  204. [203]
    Legay, F. u. N. Legay-Sommaire: Sur les possibilités de réalisation d’un maser optique utilisant l’énergie de vibration des gaz excités par l’azote activé. Compt. Rend. 259 (1964) 99–103.Google Scholar
  205. [204]
    Patel, C. K. N.: Selective excitation through vibrational energy transfer and optical maser action in N,-0O2. Phys. Rev. Letters 13 (1964) 617.ADSGoogle Scholar
  206. [205]
    Statz, H.: Transition probalities between laser states in carbon dioxide. J. Appl. Phys. 37, 11 (1966) 4278–4284.ADSGoogle Scholar
  207. [206]
    Witteman, W. J.: Inversion mechanisms, population densities and coupling-out of a high-power molecular laser. Philips Res. Repts. 21 (1966) 73–84.Google Scholar
  208. [207]
    Patel, C. K. N.: Vibration energy transfer — an efficient means of selective excitation in molecules. Phys. of Quantum Electronics, New York: McGraw-Hill 1966, S. 643–654.Google Scholar
  209. [208]
    Patel, C. K. N.: Interpretation of CO2 optical maser experiments. Phys. Rev. Letters 12, 21 (1964) 588.ADSGoogle Scholar
  210. [209]
    Patel, C. K. N.: CW high-power N2–0O2 laser. Appl. Phys. Letters 7, 1 (1965) 15–17.ADSGoogle Scholar
  211. [210]
    Moeller, G., u. J. D. Rigden: High-power laser action in CO3-He mixtures. Appl. Phys. Letters 7, 10 (1965) 274–276.ADSGoogle Scholar
  212. [211]
    Patel, C. K. N., P. K. Tien u. J. H. Mcfee: CW high-power CO3–N2–He laser. Appl. Phys. Letters 7, 11 (1965) 290–292.ADSGoogle Scholar
  213. [212]
    Witteman, W. J.: Increasing continuous laser-action on CO2 rotational vibrational transitions through selective depopulation of the lower laser level by means of water vapour, Phys. Letters 18, 2 (1965) 125–127.Google Scholar
  214. [213]
    Witteman, W. J.: Rate-determining processes for the production of radiation in high-power molecular lasers, IEEE J. Q. E. QE-2, 9 (1966) 375–378.ADSGoogle Scholar
  215. [214]
    Rosenberger, D.: The influence of hydrogen on the output of a N2–CO, laser, Phys. Letters 21, 5 (1966) 520–521.Google Scholar
  216. [215]
    Bridges, T. J., u. C. K. M. Patel: High-power brewster window laser at 10.6 microns. Appl. Phys. Letters 7, 9 (1965) 244–245.ADSGoogle Scholar
  217. [216]
    Howe, J. A.: Effect of foreign gases on the CO2 laser: R-branch transitions. Appl. Phys. Letters 7, 1 (1965) 21–22.ADSGoogle Scholar
  218. [217]
    Moeller, G., u. J. D. Rigden: Observation of laser action in the R-branch of CO2 and N20 vibrational spectra, Appl. Phys. Letters 8, 3 (1966) 69–70.ADSGoogle Scholar
  219. [218]
    Frapard, C., P. Laures, M. Roulot, X. Ziegler u. N. Legay-Sommaire: Mise en évidence de 85 oscillations laser nouvelles sur trois transitions vibrationelles de l’anhydride carbonique. Compt. Rend. 262, 20 (1966) 1340–1343.Google Scholar
  220. [219]
    Hocker, L. O., M. A. Kovacs, C. K. Rhodes, G. W. Flynn u. A. Javan: Vibrational relaxation measurements in CO2 using an induced-fluorescence technique. Phys. Rev. Letters 17, 5 (1966) 233–235.ADSGoogle Scholar
  221. [220]
    Flynn, G. W., L. O. Hocker, A. Javan, M. A. KOVACS u. C. K. RHODES: Progress and applications of Q-switching techniques using molecular gas lasers. IEEE J. Q. E. QE-2, 9 (1966) 378–381.ADSGoogle Scholar
  222. [221]
    Flynn, G. W., M. A. Kovacs, C. K. Rhodes u. A. Javan: Vibrational and rotational studies using Q-switching of molecular gas lasers. Appl. Phys. Letters 8, 3 (1966) 63–65.ADSGoogle Scholar
  223. [222]
    Bridges, T. J.: Competition, hysteresis and reactive Q-switching in CO2 lasers at 10,6 microns. Appl. Phys. Letters 9, 4 (1966) 174–176.ADSGoogle Scholar
  224. [223]
    Ridden, J. D., u. G. Moeller: Recent developments in CO2 lasers. IEEE J. Q. E. QE-2, 9 (1966) 365–368.ADSGoogle Scholar
  225. [224]
    Appl. Phys. Letters 6, 1 (1965) 12–13.Google Scholar
  226. [225]
    Howe, J. A.: R-branch laser action in N20. Phys. Letters 17, 3 (1965) 252–253.ADSGoogle Scholar
  227. [226]
    Laures, P., u. X. Ziegler: Lasers moléculaires de grande puissance en fonctionnement continu et en impulsions. J. Chim. Phys. 64 (1967) 100–106.Google Scholar
  228. [227]
    Patel, C. K. N.: CW laser oscillation in an N2 CS2 system. Appl. Phys. Letters 7, 10 (1965) 273–274.ADSGoogle Scholar
  229. [228]
    Deutsch, T. F.: OSC molecular laser. Appl. Phys. Letters 8, 12 (1966) 334–335.ADSGoogle Scholar
  230. [229]
    Patel, C. K. N.: Vibrational-rotational laser action in carbon monoxide. Phys. Rev. 141, 1 (1966) 71–83.ADSGoogle Scholar
  231. [230]
    Patel, C. K. N.: CW laser on vibrational-rotational transitions of CO. Appl. Phys. Letters 7, 9 (1965) 246–247.ADSGoogle Scholar
  232. [231]
    Deutsch, T. F.: NO molecular laser. Appl. Phys. Letters 9, 8 (1966) 295–297.ADSGoogle Scholar
  233. [232]
    Bazxulin, P. A., I. N. Kynazev U. G. G. Petrash: Stimulated emission from molecular hydrogen and deuterium in the near infrared. Sov. Phys. JETP 22 (1966) 11–16.ADSGoogle Scholar
  234. [233]
    Mcfarlane, R. A.: Stimulated emission spectroscopy of some diatomic molecules. Physics of Quant. Electr., New York: McGraw Hill 1966, S. 655–663.Google Scholar
  235. [234]
    Mathias, L. E. S., u. J. T. Parker: Stimulated emission in the band spectrum of nitrogen. Appl. Phys. Letters 3, 1 (1963) 16.ADSGoogle Scholar
  236. [235]
    Heard, H. G.: Ultra-violet gas laser at room temperature. Nature 200 (1963) 667.ADSGoogle Scholar
  237. [236]
    Shipman, J. D., u. A. C. Kolb: A high power pulsed nitrogen laser. IEEE J. Q. E. QE-2 (1966) 298.Google Scholar
  238. [237]
    Kasuya, T., u. D. R. Lide, JR.: Measurements on the molecular nitrogen pulsed laser. Appl. Opt. 6, 1 (1967) 69–70.ADSGoogle Scholar
  239. [238]
    Mathias, L. E. S., u. J. T. Parker: Visible laser oscillations from carbon monoxide. Phys. Letters 7 (1963) 194.ADSGoogle Scholar
  240. [239]
    Creo, P. K., u. H. G. Cooper: Excitation mechanisms of population inversion in CO and N2 palsed lasers. Appl. Phys. Letters 5, 3 (1964) 42–44.ADSGoogle Scholar
  241. [240]
    Cooper, H. G., u. P. K. Creo: Dependence of the recovery time of the pulsed carbon monoxide laser on gas pressure and tube bore. Appl. Phys. Letters 5, 3 (1964) 44 bis 46.Google Scholar
  242. [241]
    Rabinowitz, P., S. Jacobs u. G. Gould: Continuous optically pumped Cs laser. Appl. Opt. 1, 4 (1962) 513–516.ADSGoogle Scholar
  243. [242]
    Kaspar, J. V. V., u. G. C. Pimentel: Atomic iodine photodissociation laser. Appl. Phys. Letters 5, 11 (1964) 231–233.ADSGoogle Scholar
  244. [243]
    Pollack, M. A.: Molecular laser action in nitric oxide by photodissociation of NOCI. Appl. Phys. Letters 9, 2 (1966) 94–96.ADSGoogle Scholar
  245. [244]
    Pollack, M. A.: Laser action in optically-pumped CN. Appl. Phys. Letters 9, 6 (1966) 230–232.MathSciNetADSGoogle Scholar
  246. [245]
    Polanyi, J. C.: Proposal for an infrared maser dependent on vibrational excitation. J. Chem. Phys. 34, 1 (1961) 347–348.ADSGoogle Scholar
  247. [246]
    Kaspar, J. V. V., u. G. C. Pimentel: HCl chemical laser. Phys. Rev. Letters 14, 10 (1965) 352–354.ADSGoogle Scholar
  248. [247]
    Pollack, M. A.: Laser oscillation in chemically formed CO. Appl. Phys. Letters 8, 9 (1966) 237–238.ADSGoogle Scholar
  249. [248]
    Turner, R., K. M. Baird, M. J. Taylor U. C. J. van Der Hoeven: Lifetime of helium—neon lasers. Rev. Sci. Instr. 35, (1964) 996–1002.ADSGoogle Scholar
  250. [249]
    Turner, R., C. J. Van Der Hoeven: Analysis of gas pressure and composition in a helium—neon laser discharge. Rev. Sci. Instr. 36 (1965) 1003–1005.ADSGoogle Scholar
  251. [250]
    Taylor, J. E.: Quenching of optical gain in helium—neon masers by oxygen. Bull. Am. Phys. Soc. II, Bd. 9 (1964) 281.Google Scholar
  252. [251]
    Hociuli, U., u. P. Haldemann • Cold cathodes for possible use in 6328 A single mode He—Ne gas lasers. Rev. Sci. Instr. 36, 10 (1965) 1493–1494.ADSGoogle Scholar
  253. [252]
    White, A. D.: Frequency stabilization of gas lasers. IEEE J. Q. E. QE-1, 8 (1965) 349–357.ADSGoogle Scholar
  254. [253]
    White, A. D.: Gas laser frequency stabilization. Microwaves 6, 1 (1967) 51–61.Google Scholar
  255. [254]
    Shmoda, K., u. A. Javan: Stabilization of the He-Ne maser on the atomic line center. J. Appl. Phys. 36 (1965) 718.Google Scholar
  256. [255]
    Bloom, A. L., u. D. L. Wright: Pressure shifts in a stabilized single wavelength helium-neon laser. Appl. Opt. 5, 10 (1966) 1528–1532.ADSGoogle Scholar
  257. [256]
    Bennett, JR., W. R., S. F. Jacobs, J. T. Latourette u. P. Rabinowitz: Dispersion characteristics and frequency stabilization of a gas laser. Appl. Phys. Letters 5 (1964) 56.Google Scholar
  258. [257]
    White, A. D., E. I. GORDON u. E. F. LABUDA: Frequency stabilization of single mode gas lasers. Appl. Phys. Letters 5 (1964) 97.ADSGoogle Scholar
  259. [258]
    Smith, P. W.: Stabilized, single-frequency output from a long laser cavity. IEEE J. Q. E. QE-1, 8 (1965) 343–348.ADSGoogle Scholar
  260. [259]
    Didomenico, JR., M.: Characteristics of a single-frequency Michelson-type He-Ne gas laser. IEEE J. Q. E. QE-2, 8 (1966) 311–322.ADSGoogle Scholar
  261. [260]
    A 20Ne transition. Appl. Phys. Letters 10 (1967) 24–26.Google Scholar
  262. [261]
    Piltch, M., u. G. Gould: High temperature alumina discharge tube for pulsed metal vapor lasers. Rev. of Sci. Instr. 37, 7 (1966) 925–927.ADSGoogle Scholar
  263. [262]
    Rigden, J. D.: A metallic plasma tube for ion lasers. IEEE J. Q. E. QE-1, 5 (1965) 221.ADSGoogle Scholar
  264. [263]
    Goldsbobough, J. P.: Cyclotron resonance excitation of gas-ion laser transitions. Appl. Phys. Letters 8, 9 (1966) 218–219.ADSGoogle Scholar
  265. [264]
    Neusel, R. H.: A new xenon laser oscillation at 5401 A. IEEE J. Q. E. QE-2, 3 (1966) 70.ADSGoogle Scholar
  266. [265]
    Neusel, R. H.: New laser oscillations in xenon and krypton. IEEE J. Q. E. QE-2, 11 (1966) 758.Google Scholar
  267. [266]
    Bridges, W. B., u. A. S. Halstead: New cw laser transitions in argon, krypton, and xenon. IEEE J. Q. E. QE-2, 4 (1966) 84.ADSGoogle Scholar
  268. [267]
    Bockasten, K., T. Lundholm u. O. ANDRADE: New near infrared laser lines in argon I. Phys. Letters 22, 2 (1966) 145–146.ADSGoogle Scholar
  269. [268]
    Neusel, R. H.: New laser oscillations in krypton and xenon. IEEE J. Q. E. QE-2, 8 (1966) 334.ADSGoogle Scholar
  270. [269]
    Neusel, R. H.: A new krypton laser oscillation at 5016,4 A. IEEE J. Q. E. QE-2, 5 (1966) 106.ADSGoogle Scholar
  271. [270]
    Creo, P. K., u. H. G. Cooper: UV and visible laser oscillations in fluorine, phosphorus and chlorine. Appl. Phys. Letters 7, 7 (1966) 202–204.ADSGoogle Scholar
  272. [271]
    Petrov, Y. N., u. A. M. Prokhorov: 75 fI quantum generator. JETP Letters 1, 1 (1965) 24–25.ADSGoogle Scholar
  273. [272]
    Palenius, H. P.: The indentification of some Si and Cl laser observed by Cheo and Cooper. Appl. Phys. Letters 8, 4 (1966) 82–83.ADSGoogle Scholar
  274. [273]
    Keeffe, W. M., D. W. J. Graham: Laser oscillation in the visible spectrum o singly ionized pure bromine vapor. Appl. Phys. Letters 7, 10 (1965) 263–264.ADSGoogle Scholar
  275. [274]
    Bell, E. W., A. L. Bloom u. J. P. Goldsborougm: Visible laser transitions in ionized selenium, arsenic, and bromine. IEEE J. Q. E. QE-1, 9 (1965) 400.ADSGoogle Scholar
  276. [275]
    Kovalchux, V. M., u. G. G. Petrash: New generation lines of a pulsed iodine-vapor laser. JETP Letters 4, 6 (1966) 144–146.ADSGoogle Scholar
  277. [276]
    Willet, C. S., u. O. S. Heavens: Laser transition at 651,6 nm in ionized iodine. Optics Acta 13, 3 (1966) 271–273.ADSGoogle Scholar
  278. [277]
    Allen, R. B., R. B. Starnes u. A. A. DoUGAL: A new pulsed ion laser transition in nitrogen at 3995 A. IEEE J. Q. E. QE-2, 8 (1966) 334.ADSGoogle Scholar
  279. [278]
    Cooper, H. G., u. P. K. Creo: Ion laser oscillations in sulfur. Phys. of Quant. Electr., New York: McGraw Hill 1966, S. 690–697.Google Scholar
  280. [279]
    Cottrell, T. H. E., D. C. Sinclair u. J. M. Forsyth: New laser wavelengths in krypton. IEEE J. Q. E. QE-2, 10 (1966) 703.Google Scholar
  281. [280]
    Fowles, G. R., u. W. T. Silfvast: Laser action in the ionic spectra of zinc and cadmium. IEEE J. Q. E. QE-1, 3 (1965) 131.ADSGoogle Scholar
  282. [281]
    Silfvast, W. T., G. R. Fowles u. B. D. HOPKINS: Laser action in singly ionized Sn, Pb, In, Cd, and Zn. Appl. Phys. Letters 8, 12 (1966) 318–319.ADSGoogle Scholar
  283. [282]
    Bockasten, K., M. Garavaglia, B. A. LENGYEL U. T. LUNDHOLM: Laser lines in Hg I. J. Opt. Soc. Am. 55 (1965) 1051–1053.ADSGoogle Scholar
  284. [283]
    Bell, W. E., A. L. BLooi u. J. P. Goldsbor.Ough: New laser transitions in antimony and tellurium. IEEE J. Q. E. QE-2, 6 (1966) 154.Google Scholar
  285. [284]
    Silfvast, W. T., u. G. R. Fowles: Laser action on several hyperfine transitions in Mn I. J. Opt. Soc. Am. 56, 6 (1966) 832–833.Google Scholar
  286. [285]
    Keeffe, W. M., u. W. J. Graham: Observation of new Br+ laser transitions. Phys. Letters 20 (1966) 643.ADSGoogle Scholar
  287. [286]
    Labuda, E. F., u. A. M. Johnson: Threshold properties of continuous duty rare gas ion laser transitions. IEEE J. Q. E. QE-2, 10 (1966) 700–701.Google Scholar
  288. [287]
    Henry, A., G. Arya u. L. Henry: Émission laser de l’oxyde de carbone dans le spectre visible. Compt. Rend. 261 (1965) 1495–1497.Google Scholar
  289. [288]
    Mcfarlane, R. A., u. J. A. Howe: Stimulated emission in the system CO/CO2. Phys. Letters 19, 3 (1965) 208–210.ADSGoogle Scholar
  290. [289]
    Mathias, L. E. S., A. Crocker u. M. S. Wills: Laser oscillations from nitrous oxide at wavelengths around 10,911. Phys. Letters 13 (1964) 303–304.ADSGoogle Scholar
  291. [290]
    Mathias, L. E. S., A. Crocker U. M. S. Wills: Laser oscillations at wavelengths between 21 and 32 from a pulsed discharge through ammonia. Phys. Letters 14, 1 (1965) 33–34.ADSGoogle Scholar
  292. [291]
    Witteman, J. W., u. R. Bleekrode: Pulsed and continuous molecular far infrared gaslaser. Phys. Letters 13, 2 (1964) 126–127.ADSGoogle Scholar
  293. [292]
    Crocker, A., H. A. Gebbie, M. F. Kimmitt U. L. E. S. Mathias: Stimulated emission in the far infrared. Nature 201, 4910 (1964) 250–251.ADSGoogle Scholar
  294. [293]
    Mathias, L. E. S., A. Crocker: Stimulated emission in the far infra-red from water vapour and deuterium oxide discharges. Phys. Letters 13, 1 (1964) 35.ADSGoogle Scholar
  295. [294]
    Müller, W. M., u. G. T. Flesher: Continuous wave submillimeter oscillation in H20, D20 and CH3CN. Appl. Phys. Letters 8, 9 (1966) 217–218.ADSGoogle Scholar
  296. [295]
    Flesher, G. T., u. W. M. Müllrr: Submillimeter gas laser. Proc. IEEE 54, 4 (1966) 543–546.Google Scholar
  297. [296]
    Gebbie, H. A., N. W. B. Stone u. F. D. Findlay: A stimulated emission source at 0,34 millimetre wavelength. Nature 202 (1964) 686.ADSGoogle Scholar
  298. [297]
    Steffen, H., J. Steffen, J. F. Moser u. F. K. Kneibühl: Stimulated emission of ICN up to 0,774 mm wavelength. Z. angew. Math. Phys. 17, 3 (1966) 472–474.Google Scholar
  299. [298]
    Steffen, H., J. Steffen, J. F. Moser u. F. K. Kneubuhl: Comments on a new laser emission at 0,774 mm wavelength from ICN. Phys. Letters 21, 4 (1966) 425–426.ADSGoogle Scholar
  300. [299]
    Steffen, H., P. Schwaller, J.-F. MOSER U. F. K. KNEUBÜIJL: Mechanism of the submillimeter laser emissions from the CN-radical. Phys. Letters 23, 5 (1966) 313 bis 314.Google Scholar
  301. [300]
    Prettl, W., u. L. Genzel: Notes on the submillimeter laser emission from cyanic compounds. Phys. Letters 23, 7 (1966) 443–444.ADSGoogle Scholar
  302. [301]
    Hocker, L. O., A. Javan U. D. Ramachandra RAO: Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. Appl. Phys. Letters 10, 5 (1967) 147–149.ADSGoogle Scholar
  303. [302]
    Abrams, R. L. u. G. J. \Volga: Near infrared laser transitions in pure helium. IEEE J. Q. E. Qe-3 (1967) 368.Google Scholar
  304. [303]
    Mathias, L. E. S., A. Crocker U. M. S. WILLS: Pulsed laser emission from helium at 95,um. IEEE J. Q. E. Qe-3 (1967) 170.Google Scholar
  305. [304]
    Bridges, W. B., R. J. Freiberg U. A. S. Halsted: New continous UV ion transitions in neon, argon and krypton. IEEE J. Q. E. Qe-3 (1967) 339.Google Scholar
  306. [305]
    Neusel, R. H.: New laser oscillations in Ar, Kr, Xe u. N. IEEE J. Q. E. Qe-3 (1967) 207–208.Google Scholar
  307. [306]
    Cooper H. G. u. P. K. CREO: Laser transitions in B If, Br II and Sn. IEEE J. Q. E. Qe-2 (1966) 785.Google Scholar
  308. [307]
    Willett C. S.: New laser oscillations in singly ionized iodine. IEEE J. Q. E. Qe-3 (1967) 33.Google Scholar
  309. [308]
    Carr, W. C. u. R. W. Grow: A new laser line in tin using stanic chloride vapor. Proc. IEEE 55 (1967) 1198.Google Scholar
  310. [309]
    LIDE, JR., D. R. u. A. G. Maki. On the explanation of the so-called CN laser. Appl. Phys. Letters 11 (1967) 62–64.ADSGoogle Scholar
  311. [310]
    Hocker, L. O. u. A. Javan: Absolute frequency measurements on new cw HCN submilimeter laser lines. Phys. Letters 25A (1967) 489–490.ADSGoogle Scholar
  312. [311]
    Maki, A. G.: Interpretation of the CS2 laser transitions. Appl. Phys. Letters 11 (1967) 204–205.ADSGoogle Scholar
  313. [312]
    Lide, JR., D. R.: Interpretation of the far infrared laser oscillation in ammonia. Phys. Letters 24A (1967) 599–600.ADSGoogle Scholar
  314. [313]
    Deutsch, T. F.: Laser emission from HF rotational transitions. Appl. Phys. Letters 11 (1967) 18–20.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • D. Rosenberger

There are no affiliations available

Personalised recommendations