Geologic Characteristics and Genetic Problems Associated with the Development of Granite-Hosted Deposits of Tantalum and Niobium

  • P. J. Pollard
Part of the Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 7)


Granite-hosted deposits of tantalum and niobium form massive or sheetlike zones of disseminated mineralization in the upper portions of some geochemically specialized granite plutons. Such mineralization usually reaches a maximum in association with albite and fluorite (±lithium)-rich zones in small, late-stage intrusions. These zones are formed in some cases by crystallization of fluorine-rich magmas, and in other cases may result from postmagmatic alteration.

The detailed textural and timing information required to assess the influence of magmatic and postmagmatic processes in the development of these deposits is lacking in many cases. Two major genetic models for mineralization envisage metal accumulation to result either from enrichment within the upper portion of a zoned magma chamber at the magmatic stage, or by leaching from lower levels of the granite with precipitation in the upper levels at the postmagmatic stage. Further detailed mineralogical, textural, geochemical and isotopic studies are required before the relative importance of these alternatives can be fully assessed.


Nepheline Syenite Alkali Feldspar Alkali Granite Argillic Alteration Genetic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beus AA (1962) Wall rock alterations of hydrothermal-pneumatolytic deposits of rare elements. Int Geol Rev 4: 1144–1153CrossRefGoogle Scholar
  2. Beus AA (1970) Metasomatic zoning in deposits of rare elements of the albitite formation. In: Pouba Z Stemprok M (eds) Problems of hydrothermal ore deposition. Int Union Geol Sci Ser A, 2. Schweizerbart, Stuttgart, pp 325-329Google Scholar
  3. Beus AA (1982) Metallogeny of Precambrian rare-metal granitoids. Rev Bras Geosci 12: 410–413Google Scholar
  4. Beus AA, Zalashkova N Ye (1964) Postmagmatic high temperature metasomatic processes in granitic rocks. Int Geol Rev 6: 668–681CrossRefGoogle Scholar
  5. Beus AA, Severov EA, Sitnin AA, Subbotin RD (1962) Albitized and greisenized granites (apogranites). Academic Science Press, Moscow, 194 pp (in Russian)Google Scholar
  6. Booth B (1968) Petrogenetic significance of alkali feldspar megacrysts and their inclusions in Cornubian granites. Nature (London) 217: 1036–1038CrossRefGoogle Scholar
  7. Bowden P, Kinnaird JA (1978) Younger granites of Nigeria — a zinc-rich tin province. Trans IMM Sec B (Appl Earth Sci) 78: B66–69Google Scholar
  8. Bowden P, Kinnaird JA (1984) Geology and mineralization of the Nigerian anorogenic ring complexes. Geol Jahrb R B 56: 68 pGoogle Scholar
  9. Christiansen EH, Burt DM, Sheridan MF, Wilson RT (1983) The petrogenesis of topaz rhyolites from the western United States. Contrib Mineral Petrol 83: 16–30CrossRefGoogle Scholar
  10. Cuney M, Autran A, Burnol L (1985) Premiers resultats apportés par le sondage GPF de 900m realisé sur le granite sodolithique et fluoré à minéralization disseminée de Beauvoir. Chron Rech Mineral 481: 59–63Google Scholar
  11. Dingwell DB (1985) The structure and properties of fluorine-rich silicate melts: implications for granite petrogenesis. In: Taylor RP, Strong DF (eds) Granite-related mineral deposits: geology, petrogenesis and tectonic setting (ext abs). CIM, Halifax, pp 72-79Google Scholar
  12. Dingwell DB, Scarfe CM (1983) Major element partitioning in the system haplogranite-HF-H2O: implications for leucogranites and high-silica rhyolites. EOS 64: 312Google Scholar
  13. Drysdall AR, Jackson NJ, Ramsay CR, Douch CJ, Hackett H (1984) Rare element mineralization related to Precambrian alkali granites in the Arabian Shield. Econ Geol 79: 1366–1377CrossRefGoogle Scholar
  14. Garson MS, Mitchell AHG (1975) The geology of the tin belt in Peninsular Thailand around Phuket, Phangnga and Takua Pa Inst Geol Sci Overseas Mem 1: 112 ppGoogle Scholar
  15. Ginzberg AI, Fel’dman LG (1977) Deposits of tantalum and niobium. In Smirnov VI (ed) Ore deposits of the USSR, Vol. 3. Pitman, London, pp 372-424Google Scholar
  16. Hards NJ (1976) Distribution of elements between the fluid phase and the silicate melt phase of granites and nepheline syenites. NERC Rep Progr Exp Petrol 3: 88–90Google Scholar
  17. Hu S, Cao X, Yan Z, Ouyan Z (1984) The relations between H-Na-K metasomatic alterations and Li-Nb-Ta metallizations of the granite No 414 in south China. 27th Int Geol Congr (preprint)Google Scholar
  18. Kennedy GC (1950) A portion of the system silica-water. Econ Geol 45: 629–653CrossRefGoogle Scholar
  19. Kinnaird JA (1985) Hydrothermal alteration and mineralization of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3: 229–251Google Scholar
  20. Kinnaird JA, Bowden P, Ixer RA, Odling NWA (1985) Mineralogy, geochemistry and mineralization of the Ririwai complex, northern Nigeria. J Afr Earth Sci 3: 185–222Google Scholar
  21. Kosakevitch A (1976) Evolution de 1a minéralization en Li, Ta et Nb dans la coupole granitique de Beauvoir (massif d’Echassiéres, Allier). BRGM, Orleans, 72 ppGoogle Scholar
  22. Koval PV, Yurchenko SA, Nicolayeva DKh (1971) Paragenetic types of muscovite from apogranites of Transbaykal. Int Geol Rev 13: 1233–1241CrossRefGoogle Scholar
  23. Koval PV, Kovalenko VI, Kuz’min MI, Pisarskaya VA, Yurchenko SA (1972) Mineral parageneses, composition and nomenclature of micas in rare metal and albite-bearing granitoids. Dokl Acad Sci USSR Earth Sci Sec 202: 163–166Google Scholar
  24. Kovalenko VI (1978) The genesis of rare metal granitoids and related ore deposits. In: Stemprok M, Burnol L, Tischendorf G (eds) Metallization associated with acid magmatism. Geol Surv (Prague) 3: 235: 258Google Scholar
  25. Kovalenko VI, Kovalenko NI (1984) Problems of the origin, ore-bearing and evolution of rare-metal granitoids. Phys Earth Planet Int 35: 51–62CrossRefGoogle Scholar
  26. Kovalenko VI, Kuz’min MI, Letnikov FA (1970) Magmatic origin of lithium-and fluorine-bearing rare-metal granite. Dokl Acad Sci USSR Earth Sci Sec 190: 189–192Google Scholar
  27. Kovalenko VI, Kuz’min MI, Antipin VS, Petrov LL (1971) Topaz-bearing quartz keratophyre (ongonite), a new variety of subvolcanic igneous vein rock. Dokl Acad Sci USSR Earth Sci Sec 199: 132–135Google Scholar
  28. Lagache M, Weisbrod A (1977) The system: two alkali feldspars-KCl-NaCI-H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62: 77–101CrossRefGoogle Scholar
  29. Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76: 206–215CrossRefGoogle Scholar
  30. Ontoev DO (1978) Relation of multi-stage deposits of tungsten, molybdenum and tin to the history of granitoid formation. In: Stemprok M, Burnol L, Tischendorf G (eds) Metallization associated with acid magmatism. Geol Serv (Prague) 3: 97-108Google Scholar
  31. Pichavant M (1983) (Na, K) exchange between alkali feldspars and aqueous solutions containing borate and fluoride anions, experimental results at P= lkbar. 3rd NATO Adv Stud Inst Feldspars and feldspathoids, Rennes, p 102Google Scholar
  32. Pollard PJ, Taylor RG (1986) Progressive evolution of alteration and tin mineralization: controls by interstitial permeability and fracture-related tapping of magmatic fluid reservoirs in tin granites. Econ Geol 81: 1795–1800CrossRefGoogle Scholar
  33. Shannon JR, Walker BM, Carten RB, Geraghty EP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology 10: 293–297CrossRefGoogle Scholar
  34. Shcherba GN (1970) Greisens. Int Geol Rev 12: 114–150, 239-255CrossRefGoogle Scholar
  35. Stone M, Austin WGC (1961) The metasomatic origin of the potash feldspar megacrysts in the granites of southwestern England. J Geol 69: 464–472CrossRefGoogle Scholar
  36. Syritso LF, Chernik LN (1967) Evolution in accessory mineral paragenesis during metasomatic alteration of granites in eastern Transbaikalia massifs. Int Geol Rev 9: 814–827CrossRefGoogle Scholar
  37. Syritso LF, Zalashkova, NYe, Zorina ML, Sokolova YeP (1971) Micas in metasomatically altered granites of the acid series. Int Geol Rev 13: 717–729CrossRefGoogle Scholar
  38. Taylor RG (1979) Geology of tin deposits. Elsevier, Amsterdam, 543 ppGoogle Scholar
  39. Taylor RG, Pollard PJ (1987) Pervasive hydrothermal alteration in tin-bearing granites and implications for the evolution of ore-bearing magmatic fluids. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. CIM Spec Vol 39Google Scholar
  40. Wyart J, Sabatier G (1955) Solubilité du quartz dans les solutions de sels alcalins sous pression au-dessus de la température critique. CR Acad Sci 240: 2157–2159Google Scholar
  41. Zalashkova NYe, Sitnin AA (1967) Features of the distribution of rare elements in tantalum-bearing apogranites and biotite granites. Geochem Int 4: 1013–1025Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. J. Pollard
    • 1
  1. 1.Department of GeologyJames Cook University of North QueenslandTownsvilleAustralia

Personalised recommendations