Ion Emissions from Liquids (Review)

  • Marvin L. Vestal
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 25)


The production of charged particles by spraying or otherwise disrupting liquid surfaces has been studied for more than a century [1] but only during the past twenty years has ion emission from liquids been used as a source of ions for mass spectrometry. Applications to organic mass spectrometry are of even more recent origin. Several studies have shown that it is possible to extract ions from solution and inject them into a mass spectrometer without significantly increasing their internal energy; as a result, desorption of ions from liquid solutions provides a potentially attractive approach to applying mass spectrometry to large, nonvolatile, or thermally labile compounds not accessible by conventional techniques.


Liquid Surface Image Force Field Desorption Organic Mass Spectrometry Electron Multiplier Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For references to the earlier literature see, Leonard B. Loeb, Static Electrification, Springer-Verlag, Berlin, 1958.Google Scholar
  2. 2.
    C. A. Evans, Jr. and C. D. Hendricks, Rev. Sci. Instr. 43, 1527 (1972).CrossRefGoogle Scholar
  3. 3.
    D. S. Simons, B. N. Colby, and C. A. Evans, Jr., Int. J7-Mass Spectrom. Ion Phys. 15, 291 (1974).Google Scholar
  4. 4.
    B. P. Stimpson and C. A. Evans, Jr., Rimed. Mass Spectrom. 5, 52 (1978).CrossRefGoogle Scholar
  5. 5.
    B. P. Stimpson, D. S. Simons, and C. A. Evans, Jr., J. Phys. Chem. 82, 660 (1978).CrossRefGoogle Scholar
  6. 6.
    M. Dole, L. L. Mach, R. L. Hines, R. C. Mobley, L. D. Ferguson, and M. B. Alice, J. Chem. Phys. 49, 2240 (1968).CrossRefGoogle Scholar
  7. 7.
    L. L. Mack, P. Kralick, A. R.heude, and M. Dole, J. Chem. Phys. 52, 4977 (1970).CrossRefGoogle Scholar
  8. 8.
    J. V. Iribarne and B. A. Thomson, J. Chem. Phys. 64, 2287 (1976).CrossRefGoogle Scholar
  9. 9.
    B. A. Thomson and J. V. Iribarne, J. Chem. Phys. 71, 4451 (1979).CrossRefGoogle Scholar
  10. 10.
    C. R. Blakley, M. J. McAdams, and M. L. Vestal, J. Chromatogr. 158, 264 (1978).Google Scholar
  11. 11.
    C. R. Blakley, J. J. Carmody, and M. L. Vestal, Anal. Chem. 52, 1636 (1980).CrossRefGoogle Scholar
  12. 12.
    C. R. Blakley, J. J. Carmody, and M. L. Vestal, Clin. Chem. 26, 1467 (1980).Google Scholar
  13. 13.
    C. R. Blakley, J. J. Carmody, and M. L. Vestal, J. Am. Chem. Soc. 102, 5931 (1980).CrossRefGoogle Scholar
  14. 14.
    U. Giessmann and F. W. Röllgen, Int. J. Mass Spectrom. Ion Phys. 38, 267 (1981).CrossRefGoogle Scholar
  15. 15.
    V. E. Krohn, Jr., Progr. Astronaut. Rocketry 5, 73 (1961); J. Appl. Phys. 45, 1144 (1974).CrossRefGoogle Scholar
  16. 16.
    J. F. Mahoney, A. Y. Yahiku, H. L. Daley, R. D. Moore, and J. Perel, J. Appl. Phys. 40, 1501 (1969).CrossRefGoogle Scholar
  17. 17.
    D. S. Swatfr and C. D. Hendricks, AIAA J. 6, 1596 (1968); C. D. Hendricks and D. S. Swatik, Astronaut. Acta, 18, 295 (1973).Google Scholar
  18. 18.
    V. E. Krohn, Jr., Progr. Astronaut. Rocketry 9, 435 (1963).Google Scholar
  19. 19.
    P. W. Kidd, J. Spacecr. Rockets 5, 1034 (19685).Google Scholar
  20. 20.
    R. J. Pfeifer and C. D. Hendricks, A1AA J. 6, 496 (1968).Google Scholar
  21. 21.
    J. Perel, J. F. Mahoney, R. D. Moore, and A. Y. Yahiku, AIAA J. 7, 507 (1969).CrossRefGoogle Scholar
  22. 22.
    M. N. Huherman, J. Appl. Phys. 41, 578 (1970).CrossRefGoogle Scholar
  23. 23.
    S.-T. F. Lai, K. W. Chan, and K. D. Cook, Macromolecules 13, 953 (1980).CrossRefGoogle Scholar
  24. 24.
    A. Kantrowitz.and J. Grey, Rev. Sci. Instr. 22, 328 (1951).CrossRefGoogle Scholar
  25. 25.
    S. Chapman, Phys. Rev. 52, 184 (1937)CrossRefGoogle Scholar
  26. S. Chapman, Phys. Rev. 754, 520 (1938)CrossRefGoogle Scholar
  27. S. Chapman, Phys. Rev. 54, 528 (1938).CrossRefGoogle Scholar
  28. 26.
    E. E. Dodd, J. Appl. Phys. 24, 73 (1953).CrossRefGoogle Scholar
  29. 27.
    Sciex Application Note 7782-A, Sciex Corporation, Thornhill, Ontario, Canada.Google Scholar
  30. 28.
    H.-R. Schulten and H. M. Scheibel, Nucleic Acids Res. 3, 2027 (1976).Google Scholar
  31. 29.
    C. R. Blakley and M. L. Vestal, Anal. Chem., in press (1982).Google Scholar
  32. 30.
    For an excellent review of field-induced and thermal desorption from metal surfaces see N. I. Ionov, “Surface Ionization and its Applications” pp. 237–354, Progress in Surface Science, Vol. I, S. G. Davison, Ed., Pergamon, Oxford, 1972.Google Scholar
  33. 31.
    P. Keharle, in Ion-Molecule Reactions. J. L. Franklin, Ed., Plenum, New York, 1972, Vol. 1, Chap. 7, p. 315.Google Scholar
  34. 32.
    G. Taylor, Proc. Roy. Soc. London A280, 383 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Marvin L. Vestal
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations