Advertisement

History of the Development of Polarized Targets

  • C. D. Jeffries

Abstract

From my viewpoint as a solid state experimentalist, I will give a somewhat personal account of the key ideas and physical mechanisms leading to the achievement of large dynamic nuclear polarizations in solids. Following this I backtrack a bit and describe application to the first real targets. Finally, as a bystander, I review briefly the subsequent advances in target materials and technology, which are quite sophisticated nowadays.

Keywords

Electron Spin Resonance Line Nuclear Polarization Free Proton Polarize Target Spin Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Overhauser, Phys. Rev. 92, 411 (1953).ADSMATHCrossRefGoogle Scholar
  2. 2.
    T. Carver and C. Slichter, Phys. Rev. 92, 212 (1953).ADSCrossRefGoogle Scholar
  3. 3.
    C. D. Jeffries, in Felix Bloch and 20th Century Physics (Rice University Press, Houston, 1980 ), Ch. 4.Google Scholar
  4. 4.
    J. Korringa, Phys. Rev. 94, 1388 (1954)ADSGoogle Scholar
  5. C. Kittel, Phys. Rev. 95, 589 (1954)ADSCrossRefGoogle Scholar
  6. P. Brovetto and G. Cini, Nuovo Cimento 11, 618 (1954)Google Scholar
  7. M. J. Klein, Phys. Rev. 98, 1736 (1955).ADSCrossRefGoogle Scholar
  8. J. Korringa, Phys. Rev. 94, 1388 (1954)ADSGoogle Scholar
  9. C. Kittel, Phys. Rev. 95, 589 (1954)ADSCrossRefGoogle Scholar
  10. P. Brovetto and G. Cini, Nuovo Cimento 11, 618 (1954)CrossRefGoogle Scholar
  11. M. J. Klein, Phys. Rev. 98, 1736 (1955).ADSCrossRefGoogle Scholar
  12. 5.
    A. Abragam, Phys. Rev. 98, 1729 (1955).ADSCrossRefGoogle Scholar
  13. 6.
    A. Abragam, J. Combrisson, and I. Solomon, Compt. Rend. Acad. Sci. (Paris) 245, 157 (1957).Google Scholar
  14. 7.
    C. D. Jeffries, Phys. Rev. 106, 164 (1957)ADSCrossRefGoogle Scholar
  15. C. D. Jeffries, Phys. Rev. 117, 1056 (1960).ADSCrossRefGoogle Scholar
  16. 8.
    M. Abraham, R. Kedzie, and C. D. Jeffries, Phys. Rev. 106, 165 (1957).ADSCrossRefGoogle Scholar
  17. 9.
    A. Abragam and W. G. Proctor, Compt. Rend. Acad. Sci. (Paris) 246, 2253 (1958).Google Scholar
  18. 10.
    A. Abragam, J. Combrisson, and I. Solomon, Compt. Rend. Acad. Sci. (Paris) 247, 2337 (1958).Google Scholar
  19. 11.
    M. Abraham, M. A. H. McCausland, and F. N. H. Robinson, Phys. Rev. Lett. 2, 449 (1959).ADSCrossRefGoogle Scholar
  20. 12.
    O. S. Leifson, P. L. Scott, and C. D. Jeffries, Bull. Am. Phys. Soc. II 4, 453 (1959).Google Scholar
  21. 13.
    M. Borghini and A. Abragam, Compt. Rend. Acad. Sci. (Paris) 248, 1803 (1959).Google Scholar
  22. 14.
    P. L. Scott, O. S. Leifson, and C. D. Jeffries, Bull. Am. Phys. Soc. II 4, 453 (1959).Google Scholar
  23. 15.
    J. A. Cowen, W. R. Schaffer, and R. D. Spence, Phys. Rev. Lett. 3, 13 (1959).ADSCrossRefGoogle Scholar
  24. 16.
    T. J. Schmugge and C. D. Jeffries, Phys. Rev. Lett. 9, 268 (1962).ADSCrossRefGoogle Scholar
  25. 17.
    C. D. Jeffries, Dynamic Nuclear Orientation ( John Wiley and Sons, New York, 1963 ).Google Scholar
  26. 18.
    Peter L. Scott, Thesis, University of California, Berkeley, 1961 (unpublished).Google Scholar
  27. 19.
    P. L. Scott and C. D. Jeffries, Phys. Rev. 127, 32 (1962); R. H. Ruby, H. Benoit, and C. D. Jeffries, Phys. Rev. 127, 51 (1962).ADSCrossRefGoogle Scholar
  28. 20.
    J. H. Van Vleck, Phys. Rev. 57, 426 (1940)ADSCrossRefGoogle Scholar
  29. 20.
    J. H. Van Vleck, Phys. Rev. 59, 724 (1941).ADSMATHCrossRefGoogle Scholar
  30. 21.
    R. Orbach, Proc. Roy. Soc. (London) A264, 456 (1961).ADSGoogle Scholar
  31. 22.
    T. J. Schmugge and C. D. Jeffries, Phys. Rev. 138, A1785 (1965).ADSCrossRefGoogle Scholar
  32. 23.
    T. E. Gunter and C. D. Jeffries, Phys. Rev. 159, 290 (1967)Google Scholar
  33. C. D. Jeffries, in Proc. Int. Conf. on Polarized Targets and Ion Sources (Saclay, 1966 ), P. 95.Google Scholar
  34. 24.
    C. D. Jeffries, in Polarization Phenomena in Nuclear Reactions, eds. H. H. Barshall and W. Haeberli ( Univ. of Wisconsin Press, Madison, 1971 ), P. 351.Google Scholar
  35. 25.
    C. D. Jeffries, in Electron Paramagnetic Resonance, ed. S. Geschwind (Plenum Press, 1972 ), p. 217.Google Scholar
  36. 26.
    A. Abragam and M. Goldman, Repts. Prog. Phys. 41, 397 (1978).ADSCrossRefGoogle Scholar
  37. 27.
    A. Redfield, Phys. Rev. 98, 1787 (1955).ADSCrossRefGoogle Scholar
  38. 28.
    B. N. Provotorov, Soviet Phys. JETP 14, 1126 (1962).Google Scholar
  39. 29.
    A. Abragam and M. Borghini, in Progress in Low Temperature Physics, Vol. IV, ed. C. Gorter (North Holland, 1964 ), p. 384.CrossRefGoogle Scholar
  40. 30.
    I. Solomon, in Magnetic Resonance and Relaxation, ed. J. Schmidt (North Holland, 1963 ), p. 25.Google Scholar
  41. 31.
    M. Borghini, Phys. Rev. Lett 20, 419 (1968).CrossRefGoogle Scholar
  42. 32.
    M. Borghini, in Proc. Int. Conf, on Polarized Targets, ed. G. Shapiro (Berkeley, 1971 ), p. 1.Google Scholar
  43. 33.
    W. de Boer, J. Low Temp. Phys. 22, 185 (1976).ADSCrossRefGoogle Scholar
  44. 34.
    S. F. J. Cox, V. Bouffard, and M. Goldman, J. Phys. C6, L100 (1973).ADSCrossRefGoogle Scholar
  45. 35.
    A. Abragam et al., Phys. Lett. 2, 310 (1962).ADSCrossRefGoogle Scholar
  46. 36.
    Full details of this target are given in ref. 29, p. 446-ff.Google Scholar
  47. 37.
    A. Abragam, M. Borghini, and M. Chapellier, Compt. Rend. Acad. Sci. (Paris) 255, 1343 (1962)Google Scholar
  48. 38.
    O. Chamberlain, C. Schultz, G. Shapiro, and C. D. Jeffries, Bull. Am. Phys. Soc. 8, 38 (1963)Google Scholar
  49. 38.
    G. Shapiro, in Progress in Nuclear Techniques and Instruments, Vol. I, ed. F. S. Farley (North Holland, 1964 ), p. 176.Google Scholar
  50. 39.
    Chamberlain, C. D. Jeffries, C. H. Schultz, G. Shapiro, and L. Van Rossum, Phys. Lett. 7, 293 (1963).ADSCrossRefGoogle Scholar
  51. 40.
    M. Borghini, P. Roubeau, and C. Ryter, Nuclear Instrum. 49, 248 (1967)ADSCrossRefGoogle Scholar
  52. 40.
    M. Borghini, P. Roubeau, and C. Ryter, 49, 259 (1967).Google Scholar
  53. 41.
    H. H. Atkinson, in Proc. Int. Conf. on Polarized Targets, ed. G. Shapiro (Berkeley, 1971 ), p. 41.Google Scholar
  54. 42.
    M. Borghini, in Methods in Subnuclear Physics, Vol. IV, Part 2, ed. M. Nikolii ( Gordon and Breach, New York, 1970 ), p. 191.Google Scholar
  55. 43.
    W. de Boer and T. O. Niinikoski, Nucl. Instr. and Meth. 114, 495 (1974).ADSCrossRefGoogle Scholar
  56. 44.
    T. 0. Niinikoski and F. Udo, Nucl. Instr. and Meth. 134, 219 (1976).ADSCrossRefGoogle Scholar
  57. 45.
    T. O. Niinikoski, in Proc. Symp. on High Energy Physics with Polarized Beams and Targets, Argonne, 1976, ed. M. Marshak, Am. Inst. of Phys. Conf. Proc. No. 35, p. 458.Google Scholar
  58. 46.
    T. O. Niinikoski and J. M. Rieubland, Phys. Lett. 72A, 141 (1979).CrossRefGoogle Scholar
  59. 47.
    W. Meyer et al., Nucl. Instr. and Meth. (Letter to Editor) A244, 574 (1986)Google Scholar
  60. 47.
    U. Härtel et al., 1980 Proc. of Int. Symposium on High Energy Physics with Polarized Beams and Polarized Targets, eds. C. Joseph and J. Soffer ( Birkhauser, Basel ), P. 451Google Scholar
  61. 48.
    W. Meyer, Helv. Phys. Acta 59, 728 (1986).Google Scholar
  62. 49.
    G. Durand et al., in Proc. Symp. on High Energy Spin Physics, Minneapolis, 1988, ed. K. J. Heller, Am. Inst. of Phys. Conf. Proc. No. 187, p. 1275.Google Scholar
  63. 50.
    S. Penttila et al., in Proc. Symp. on High Energy Spin Physics, Minneapolis, 1988, ed. K. J. Heller, Am. Inst. of Phys. Conf. Proc. No. 187, p. 1281.Google Scholar
  64. 51.
    D. Hill et al., in Proc. Symp. on High Energy Spin Physics, Minneapolis, 1988, ed. K. J. Heller, Am. Inst. of Phys. Conf. Proc. No. 187, p. 1268.Google Scholar
  65. 52.
    D. G. Crabb et al., Phys. Rev. Lett. 64, 26–27 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • C. D. Jeffries
    • 1
  1. 1.Department of PhysicsUniversity of California and Lawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations