Advertisement

Eigenvectors of Real and Complex Matrices by LR and QR triangularizations

  • G. Peters
  • J. H. Wilkinson
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 186)

Abstract

In a recent paper [4] the triangularization of complex Hessenberg matrices using the LR algorithm was described. Denoting the Hessenberg matrix by H and the final triangular matrix by T we have
$$ {P^{ - 1}}HP = T, $$
(1)
where P is the product of all the transformation matrices used in the execution of the LR algorithm. In practice H will almost invariably have been derived from a general complex matrix A using the procedure comhes [3] and hence for some nonsingular S we have
$$ {P^{ - 1}}{S^{ - 1}}ASP = T. $$
(2)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dekker, T. J., Hoffman, W.: Algol 60 procedures in linear algebra. Mathematical Centre Tracts, 23. Mathematisch Centrum Amsterdam (1968).Google Scholar
  2. 2.
    Francis, J. G. F.: The QR transformation-a unitary analogue to the LR transormation. Comput. J. 4, 265–271, 332–345 (1961/62).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Martin, R. S., Wilkinson, J. H.: Similarity reduction of a general matrix to Hessenberg form. Numer. Math. 12, 349–368 (1968). Cf. 11/13.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Martin, R. S., Wilkinson, J. HThe modified L R algorithm for complex Hessenberg matrices. Numer. Math. 12, 369–376 (1968). Cf. II/16.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Martin, R. S., Wilkinson, J. H Peters, G., Wilkinson, J. H.: The QR algorithm for real Hessenberg matrices. Numer. Math. 14, 219–231 (1970). Cf. II/14.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Parlett, B. N., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer. Math. 13, 293–304 (1969). Cf. II/ll.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Rutishauser, H.: Solution of eigenvalue problems with the LR transformation. Nat. Bur Standards Appl. Math. Ser. 49, 47–81 (1958).MathSciNetGoogle Scholar
  8. 8.
    Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965.zbMATHGoogle Scholar
  9. 9.
    Peters, G., Wilkinson, J. H.: The calculation of specified eigenvectors by inverse iteration. Cf. II/l 8.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • G. Peters
  • J. H. Wilkinson

There are no affiliations available

Personalised recommendations