Advertisement

Reduction of the Symmetric Eigenproblem Ax=λBx and Related Problems to Standard Form

  • R. S. Martin
  • J. H. Wilkinson
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 186)

Abstract

In many fields of work the solution of the eigenproblems Ax=λBx and ABx=λx (or related problems) is required, where A and B are symmetric and B is positive definite. Each of these problems can be reduced to the standard symmetric eigenproblem by making use of the Cholesky factorization [4] of B.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barth, W., R. S. Martin, and J. H. Wilkinson: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 9, 386–393 (1967). Cf.II/5.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bowdler, H., R. S. Martin, C. Reinsch, and J. H. Wilkinson: The QR and QL algorithms for symmetric matrices. Numer. Math. 11, 293 -306 (1968). Cf. II/3.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Martin, R. S., C. Reinschand J.H.Wilkinson. Householder’s tridiagonalization of a symmetric matrix. Numer. Math. 11, 181–195 (1968). Cf. II/2.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Martin, R. S., C. Reinsch, and J.H.Wilkinson G. Peters, and J. H. Wilkinson. Symmetric decomposition of a positive definite matrix. Numer. Math. 7, 362–383 \(1965). Cf. I/1.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Rutishauser, H.: The Jacobi method for real symmetric matrices. Numer. Math. 9, 1–10 (1966). Cf. II/l.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Wilkinson, J. H.: Calculation of the eigenvectors of a symmetric tridiagonal matrix by inverse iteration. Numer. Math. 4, 368 -376 (1962). See also: Peters, G., and J. H. Wilkinson. The calculation of specified eigenvectors by inverse iteration. Cf. II/18.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Wilkinson, J. H. The algebraic eigenvalue problem. London: Oxford University Press 1965.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • R. S. Martin
  • J. H. Wilkinson

There are no affiliations available

Personalised recommendations