Skip to main content
Book cover

Foams pp 184–213Cite as

Mechanical Properties of Foams

  • Chapter

Part of the book series: Foams ((APPLIED PHYS,volume 10))

Abstract

The density [ρ] of a foam is the mass of the foam divided by its volume [V]. As the total mass is the sum of the gas and liquid masses (m 1 and m 2), the equation for [ρ] is

$$[\rho ] = \frac{{{m_1} + {m_2}}}{{[V]}}$$
((7.1))

The reproducibility and the stability of foams are so poor that a precise determination of [ρ] is unnecessary; hence it is permissible in practically all instances to neglect the mass m 1 of the gas phase and to use the equation

$$[\rho ] = \frac{{{m_2}}}{{[V]}}$$
((7.2))

For aqueous foams the approximation ρ 2 = 1.0 usually is sufficient; ρ 2 is the density of the liquid phase. Thus the mass (grams) of the liquid in the foam is numerically equal to its volume (V 0 cm3). In general,

$$\frac{{[\rho ]}}{{{p_2}}} = \frac{{{V_0}}}{{[V]}}$$
((7.3))

especially for nonaqueous foams the correct value for ρ 2 must be used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, M. I. Ind. Eng. Chem. 27:973 (1935).

    Article  Google Scholar 

  2. Henry, W. C., and A. D. Barbour. Ind. Eng. Chem. 25:1054 (1933).

    Article  Google Scholar 

  3. MacMillan, W. P. J. Imp. Coll. Chem. Eng. Soc. 13:64 (1960/61).

    Google Scholar 

  4. Koizumi, I. Nippon Kagaku Zasshi 83:853 (1962)

    Article  Google Scholar 

  5. Koizumi, I. Chem. Abstr. 58:13175 (1963).

    Google Scholar 

  6. Morris R. M., and A. Morris. Chem. Ind. 1965:1902.

    Google Scholar 

  7. Constable, F. H., and S. Mergen. Rev. Fac. Sci. Univ. Istanbul A12:190 (1947)

    Google Scholar 

  8. Constable, F. H., and S. Mergen. Chem Abstr. 41:6454 (1947).

    Google Scholar 

  9. Vilenskii, V. M., and V. Ya. Khentov. Zh. Prikl. Khim. 39:1103 (1966).

    Google Scholar 

  10. Gleim, V. G., and V. Ya. Khentov. Zh. Prikl. Khim. 41:2475 (1968).

    Google Scholar 

  11. Gleim, V. G., and V. Ya. Khentov. Zh. Prikl. Khim. 42:2608 (1969).

    Google Scholar 

  12. Gray, P. P., and I. Stone. Wallerstein Lab. Comm. 3:159 (1940).

    Google Scholar 

  13. Nakashima, K. Kept. Osaka Munie. Inst. Ind. Res. 4, No. 2:49 (1952)

    MathSciNet  Google Scholar 

  14. Nakashima, K. Chem. Abstr. 47:10952 (1953).

    Google Scholar 

  15. Siehr, A. Kolloid-Z. 77:27 (1936).

    Article  Google Scholar 

  16. Barmore, M. A. Colo. Agr. Expt. Sta., Tech. Bull. 9 (1934).

    Google Scholar 

  17. Hay, R. L., M. Reid, and J. A. Pearce. Can. J. Res. 25F:160 (1947).

    Article  Google Scholar 

  18. Mokrushin, S. G., V. I. Borisikhina, and K. G. Potaskuev. Zh. Prikl. Khim. 28:107 (1955).

    Google Scholar 

  19. Brenner, M. W., R. E. McCully, and S. Laufer. Am. Brewer 84, No. 2:39, 49 (1951).

    Google Scholar 

  20. Tarakanov, O. G., and E. G. Eremina. Kolloidn. Zh. 27:274 (1965).

    Google Scholar 

  21. King, E. G. J. Phys. Chem. 48:141 (1944).

    Article  Google Scholar 

  22. Ross, S. J. Phys. Chem. 50:391 (1946).

    Article  Google Scholar 

  23. Savitskaya, E. M. Kolloidn. Zh. 13:309 (1951).

    Google Scholar 

  24. Chang, R. C., H. M. Schoen, and C. S. Grove. Ind. Eng. Chem. 48:2035 (1956).

    Article  Google Scholar 

  25. Rinkes, H. Chemie-Ing.-Tech. 39:301 (1967).

    Article  Google Scholar 

  26. de Vries, A. J. Foam Stability. Delft: Rubber-Stichting. (1957), p. 29.

    Google Scholar 

  27. Balakirev, A. A., and V. K. Tikhomirov. Zh. Prikl. Khim. 42:2354 (1969).

    Google Scholar 

  28. Dupré, A. Ann. Chim. Phys. [4], 7:406 (1866), especially pp. 411–417.

    Google Scholar 

  29. Manegold, E. Schaum. Heidelberg: Strassenbau, Chemie und Technik. (1953), p. 63.

    Google Scholar 

  30. Aleinikov, N. A. Tsvetn. Metal. 6:1546 (1931)

    Google Scholar 

  31. Aleinikov, N. A. Kolloid-Beihefte 36:82 (1932).

    Google Scholar 

  32. Aleinikov, N. A. Zh. Prikl. Khim. 22:812 (1949).

    Google Scholar 

  33. Dewar, J. Proc. Roy. Inst. Gt. Brit. 22:179 (1917).

    Google Scholar 

  34. de Vries, A. J. Foam Stability. Delft: Rubber-Stichting. (1957), p. 20.

    Google Scholar 

  35. Brown, A. G., W. C. Thuman, and J. W. McBain. J. Colloid Sci. 8:508 (1953).

    Article  Google Scholar 

  36. Dewar, J. Proc. Roy. Inst. Gt. Brit. 22:359 (1918).

    Google Scholar 

  37. Schwarz, H. W. Rec. Trav. Chim. 84:771 (1965).

    Article  Google Scholar 

  38. Ross, S. Ind. Eng. Chem. 61, No. 10:48 (1969).

    Article  Google Scholar 

  39. Clark, N. O., and M. Blackman. Trans. Faraday Soc. 44:1 (1948).

    Article  Google Scholar 

  40. Mit’kevich, G. P. Zh. Prikl. Khim. 21:816 (1948).

    Google Scholar 

  41. Siehr, A. Kolloid-Z. 85:70 (1938).

    Article  Google Scholar 

  42. Deryagin, B. Kolloid-Z. 64:1 (1933).

    Article  Google Scholar 

  43. Bikerman, J. J. Foams. New York: Reinhold. (1953), p. 124.

    Google Scholar 

  44. Sasaki, T., and S. Okazaki. Kolloid-Z. 159:11 (1958).

    Article  Google Scholar 

  45. Balakirev, A. A., and V. K. Tikhomirov. Zh. Prikl. Khim. 42:216 (1969).

    Google Scholar 

  46. Peter, P. N., and R. W. Bell. Ind. Eng. Chem. 22:1124 (1930).

    Article  Google Scholar 

  47. Mit’kevich, G. P. Zh. Prikl. Khim. 22:846 (1949).

    Google Scholar 

  48. Schmalfuss, H. Kolloid-Z. 116:161 (1950).

    Article  Google Scholar 

  49. Burcik, E. J., and R. C. Neuman. J. Colloid Sci. 15:383 (1960).

    Article  Google Scholar 

  50. Grabenstetter, R. J., and J. M. Corkill. J. Colloid Sci. 18:401 (1963).

    Article  Google Scholar 

  51. Schiebl, K. Chem.-Ztg. 55:169 (1931).

    Google Scholar 

  52. Lauwers, A., and R. Ruyssen. Conf. Orig. 3e Congr. Intern. Détergenee, Cologne, I960, 3:146 (1961).

    Google Scholar 

  53. Wenzel, H. G., R. J. Brungraber, and T. E. Stetson. J. Mater. 5:396 (1970).

    Google Scholar 

  54. Bikerman, J. J. J. Colloid Sci. 5:349 (1950).

    Article  Google Scholar 

  55. Kudryavtsev, B. K., L. I. Seleznev, and G. V. Tsiklauri. Teplofiz. Vys. Temp. 9:141 (1971). Chem. Abstr. 74, No. 143739 (1971).

    Google Scholar 

  56. Grove, C. S., et al. Ind. Eng. Chem. 43:1120 (1951).

    Article  Google Scholar 

  57. Deryagin, B., and E. Obukhov. Zh. Fiz. Khim. 7: 297 (1936)

    Google Scholar 

  58. Deryagin, B., and E. Obukhov. Kolloid-Z. 68: 243 (1934).

    Article  Google Scholar 

  59. Clark, N. O. A Study of Mechanically Produced Foam for Combating Petrol Fires. London: DSIR (1947).

    Google Scholar 

  60. Rozenfeld, L. M., and E. M. Savitskaya. Kolloidn. Zh. 13:454 (1951).

    Google Scholar 

  61. Marsden, S. S., and S. A. Khan. Soc. Petrol. Eng. J. 6:17 (1966).

    Google Scholar 

  62. Kodak-Pathé, French 942 087. Chem. Abstr. 44:10391 (1950).

    Google Scholar 

  63. Dupré, A. Théorie mécanique de la chaleur. Paris: Gauthier-Villars (1869), p. 352.

    Google Scholar 

  64. Rhumbler, L. Ergeb. Physiol. 14:526 (1914).

    Article  Google Scholar 

  65. Dewar, J. Proc. Roy. Inst. Gt. Bri. 24:197 (1925).

    Google Scholar 

  66. Shkodin, A. M., and G. P. Tikhomirova. Kolloidn. Zh. 13:134 (1951).

    Google Scholar 

  67. Shkodin, A. M. Kolloidn. Zh. 14:213 (1952).

    Google Scholar 

  68. Bikerman, J. J. J. Phys. Chem. 56:164 (1952).

    Article  Google Scholar 

  69. Bretsznajder, S., W. Kawecki, and W. Dziedzic. Bull. Acad. Polon. Sci., Sér. Sci. Chim. 10:155 (1962).

    Google Scholar 

  70. Pozin, M. E., I. P. Mukhlenov, and E. Ya. Tarat. Foam Gas Purifiers, Heat Exchangers, and Absorbers. [Russian] Leningrad: Goskhimizdat. (1959).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bikerman, J.J. (1973). Mechanical Properties of Foams. In: Foams. Foams, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86734-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86734-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86736-1

  • Online ISBN: 978-3-642-86734-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics