Skip to main content

Optimization Algorithms for Congested Network Models

  • Conference paper
Book cover Flow Control of Congested Networks

Part of the book series: NATO ASI Series ((NATO ASI F,volume 38))

Abstract

This paper describes recently developed nonlinear programming algorithms for certain large-scale congested network models. The techniques include Restricted Simplicial Decomposition (RSD) applied to the single commodity flow problem (RSDNET) and the standard traffic assignment problem (RSDTA), and the basic simplicial strategy applied to the network variational inequality problem (SDVI). Computational results are presented for each method, including tests conducted on large networks from real world models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baiberg I. and Binnenbaum N. (1983) Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B 28, 3799–38l2.

    Google Scholar 

  • Bertsekas D. P. (1982) Projected Newton methods for optimization problems with simple constraints. SIAM Journal of Control and Optimization 20, 221–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsekas D. P. and Gafni E. M. (1982) Projection methods for variational inequalities with application to the traffic assignment problem. Math. Prog. Study 17, 139–159.

    Google Scholar 

  • Collins M., Cooper L., Helgason R., Kennington J. and LeBlanc L. (1978) Solving the pipe network analysis problem using optimization techniques. Management Sci. 24, 747–760.

    Article  MathSciNet  MATH  Google Scholar 

  • Dafermos S. (1980) Traffic equilibrium and variational inequalities. Transpn Sci. 14, 42–54.

    Article  MathSciNet  Google Scholar 

  • Dembo R. (1983) NLPNET: User’s guide and system documentation. School of Organization and Management, Yale University, New Haven, CT, SOM Working Paper Series B #70.

    Google Scholar 

  • Dembo R. and Tulowitzki U. (1983) Computing equilibria on large multicommodity networks: An application of truncated quadratic programming algorithms. School of Organization and Management, Yale University, New Haven, CT, SOM Working Paper Series B #65.

    Google Scholar 

  • Florian M. and Nguyen S. (1976) An application and validation of equilibrium trip assignment methods. Transpn Sci. 10, 374–389.

    Article  Google Scholar 

  • Frank M. and Wolfe P. (1956) An algorithm for quadratic programming. NRLQ 3, 95–110.

    Article  MathSciNet  Google Scholar 

  • Gill P. E., Murray W., Saunders M. A. and Wright M. H. (1983) User’s guide for SOL/NPSOL: a Fortran package for nonlinear programming. Department of Operations Research, Stanford University, California, Report SOL 83–12.

    Google Scholar 

  • Guelat J. (1983) Algorithms pour le probleme d’affectation du traffic d’equilibre avec demandes fixes: Comparasons. Center de Recherche sur les Transports, Universite de Montreal, Montreal, Publication 299.

    Google Scholar 

  • Hearn D. W. (1982) The gap function of a convex program. Opr. Res. Lett. 1, 67–71.

    Google Scholar 

  • Hearn D. W., Lawphongpanich S. and Nguyen S. (1984) Convex programming formulations of the asymmetric traffic assignment problem. Transpn Res. 18B, 357–365.

    MathSciNet  Google Scholar 

  • Hearn D. W., Lawphongpanich S. and Ventura J. A. (1984) Restricted simplicial decomposition: computation and extensions. Univ. of Florida ISE Department Research Report 84–38. (To appear in Math. Prog. Studies.)

    Google Scholar 

  • Hearn D. W., Lawphongpanich S. and Ventura J. A. (1985) Finiteness in restricted simplicial decomposition. Opr. Res. Lett. 4, 125–130.

    Google Scholar 

  • Kennington J. L. and Helgason R. V. (1980) Algorithms for Network Programming. John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Lawphongpanich S. and Hearn D. W. (1984) Simplicial decomposition of the asymmetric traffic assignment problem. Transpn Res. 18B, 123–133.

    MathSciNet  Google Scholar 

  • Lawphongpanich S. and Hearn D. W. (1986) Restricted simplicial decomposition with application to the traffic assignment problem. Ricera Operativa 38, 97–120.

    Google Scholar 

  • LeBlanc L. J., Morlok E. K. and Pierskalla W. P. (1974) An accurate and efficient approach to equilibrium traffic assignment on congested networks. Transportation Research Record 491, Interactive Graphics and Transportation Systems Planning, 12–33.

    Google Scholar 

  • Marcotte, P. (1985) A new algorithm for solving variational inequalities with application to the traffic assignment problem. Math. Prog. 33, 339–351.

    Google Scholar 

  • Mulvey J. M., Zenios S.A. and Ahlfeld D. P. (1985) Simplicial decomposition for convex generalized networks. Engineering Management Systems Program, Princeton University, Princeton, NJ, Report EES-85–8.

    Google Scholar 

  • Nguyen S. and Dupuis C. (1984) An efficient method for computing traffic equilibria in a network with asymmetric transportation costs. Transpn Sci. 18, 185–202.

    Article  Google Scholar 

  • Pang J. S. and Yu C. S. (1984) Linearized simplicial decomposition for computing traffic equilibrium on networks. Networks 14, 427–428.

    Article  MathSciNet  MATH  Google Scholar 

  • Schittkowski K. (1984) NLPQL: A Fortran subroutine for solving constrained nonlinear programming problems. Institut für Informatik, Universität Stuttgart, Germany, Report.

    Google Scholar 

  • Smith M. (1979) Existence, uniqueness and stability of traffic equilibria. Transpn. Res. 13B, 295–304.

    Google Scholar 

  • Steenbrink P. (1974) Optimization of Transport Networks. John Wiley & Sons, New York.

    Google Scholar 

  • Ventura J. A. and Hearn D. W. (1984) Computing the effective resistance in a system of conducting sticks. Univ. of Florida ISE Department Research Report 84–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hearn, D.W., Lawphongpanich, S., Ventura, J.A. (1987). Optimization Algorithms for Congested Network Models. In: Odoni, A.R., Bianco, L., Szegö, G. (eds) Flow Control of Congested Networks. NATO ASI Series, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86726-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86726-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86728-6

  • Online ISBN: 978-3-642-86726-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics