Learning and Memory in the Honeybee

  • R. Menzel
  • J. Erber
  • T. Masuhr


The understanding of the physiology of learning is dominated by two basically different hypotheses. The deterministic view, following Hebb’s (1949) concept of the memory engram, presupposes a memory groove which is built during memory formation by the adaptive change of a relatively small number of reacting sites or switch points. These so-called ’switchpoint theories’ or ‘place theories’ assume that memory involves a discrete set of cells reserved for the special function of information storage (Young 1964; Eccles 1964; Ungar 1970). The non-deterministic or statistical theory is based on Lashley’s (1950) findings which suggest that all, or nearly all, stored information is distributed throughout the whole association cortex rather than by distinct association paths or centres. The individual neuronal switch points may then be involved in the storage of many different memory traces (John 1967, 1972). The two views are similar in that they take the adaptivity of single synapses between neurones as the basic modifiable component of the nervous system (Eccles and McIntyre 1953; Eccles 1964; Ungar 1970; John 1972). They differ, however, in their conception of the gross structure of the memory system. The crucial problem, then, is to locate the stored information. The spatio-temporal pattern of activity during memory formation produces a localised change in the excitability of specific neurones. It should be possible to find such neurones using the same techniques as have been employed for the location of units in the sensory integration centres.


Memory Formation Mushroom Body Antennal Lobe Colour Signal Electroconvulsive Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B.W.: Agents that block memory. In “The Neurosciences. A Study Program” (Eds., G.C. Quarton, T. Melnechnk and F.O. Schmitt). pp. 756–764. New York: The Rockefeller University Press. (1967).Google Scholar
  2. Alloway, T.M.: Retention of learning through metamorphosis in the grain beetle (Tenebrio molitor). Am. Zoologist 12, 471–477 (1972).Google Scholar
  3. Alpern, H.P., Kimble, D.P.: Retrograde amnesic effects of diethylether and bis. (tri fluorethyl) ether. J. comp. physiol. Psychol. 63, 168–171 (1967).PubMedCrossRefGoogle Scholar
  4. Alpern, H.P., McGaugh, J.L.: Retrograde amnesia as a function of duration of electroshock stimulation. J. comp. physiol. Psychol. 65, 265–269 (1968).PubMedCrossRefGoogle Scholar
  5. von Alten, H.: Zur phylogenie des Hymenopterengehirns. Jena. Z. Naturw. 46, 511–590 (1910).Google Scholar
  6. Autrum, H., von Zwehl, V.: Die Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).CrossRefGoogle Scholar
  7. Barondes, S.A.: Multiple steps in the biology of memory. In “The Neurosciences: Second study program” (Ed., F.O. Schmitt). New York: Rockefeller University Press. pp. 272–278 (1970).Google Scholar
  8. Brown, B.M., Noble, E.P.: Cycloheximide and learning in the isolated cockroach ganglion. Brain Res. 6, 363–366 (1967).PubMedCrossRefGoogle Scholar
  9. Brown, B.M., Noble, E.P.: Cycloheximide, amino acid incorporation and learning in the isolated cockroach ganglion. Biochem. Pharmac. 17, 2371–2374 (1968).CrossRefGoogle Scholar
  10. Bullock, T.H., Horridge, G.A.: “Structure and Function in the Nervous System of Invertebrates”, Vol. 2, 1719 pp. San Francisco: Freeman (1965).Google Scholar
  11. BureŠ, J., BureŠovÁ, O.: Plasticity in single neurones and neural populations. In “Short-term Changes in Neural Activity and Behaviour” (Eds., G. Horn and R.A. Hinde), pp. 363–403. London: Cambridge University Press (1970).Google Scholar
  12. Chen, W.Y., Aranda, L.C., Luco, J.V.: Learning and long-and short-term memory in cockroahces. Anim. Behav. 18, 725–732 (1970).CrossRefGoogle Scholar
  13. Daumer, K.: Reizmetrische Untersuchung des Farbensehens der Bienen. Z. vergl. Physiol. 38, 413–478 (1956).Google Scholar
  14. Daumer, K.: Blumenfarben, wie sie die Bienen sehen. Z. vergl. Physiol. 41, 49–110 (1958).Google Scholar
  15. Dawson, R.G., McGaugh, J.L.: Electroconvulsive shock effects on a reactivated memory trace: Further examination. Science, N.Y. 166, 525–527 (1969).CrossRefGoogle Scholar
  16. Eccles, J.C.: “The Physiology of Synapses”, 316 pp. Berlin-Göttingen-Heidelberg: Springer (1964).CrossRefGoogle Scholar
  17. Eccles, J.C., McIntyre, A.K.: The effects of disuse and of activity on mammalian spinal reflexes. J. Physiol. 121, 492–516 (1953).PubMedGoogle Scholar
  18. Eisenstein, E.M.: Learning and memory in isolated insect ganglia. Adv. Insect Physiol. 9, 111–181 (1972).CrossRefGoogle Scholar
  19. Erber, J.: The time-dependent storing of optical information in the honeybee. In “Information Processing in the Visual System of Arthropods” (Ed., R. Wehner), pp. 309–314. Berlin, Heidelberg, New York: Springer-Verlag (1972).CrossRefGoogle Scholar
  20. Forel, A.: “Das Sinnesleben der Insekten”. München: E. Reinhardt (1910).Google Scholar
  21. von Frisch, K.: Der Farbensinn und Formensinn der Bienen. Zool. Jb. (Abt. Allgem. Zool. Physiol.) 35, 1–182 (1914).Google Scholar
  22. von Frisch, K.: “The Dance Language and Orientation of Bees”, 566 pp. Cambridge, Mass.: The Belknap Press of Harvard Univ. Press (1967).Google Scholar
  23. Gartside, J.B.: Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance. Nature, Lond. 220, 382–383 (1968).CrossRefGoogle Scholar
  24. Goll, W.: Strukturuntersuchungen am Gehirn von Formica. Z. Morph. Ökol. Tiere. 59, 143–210 (1967).CrossRefGoogle Scholar
  25. Gossen, M.: Untersuchungen an Gehirnen verschieden grosser, jeweils verwandter Coleopteren-und Hymenopterenarten. Zool. Jb. (Abt. Allgem. Zool. Physiol.) 62, 1–64 (1949).Google Scholar
  26. Griffith, J.S.: The transition from short to long-term memory. In “Short-term Changes in Neural Activity and Behaviour” (Eds., G. Horn and R.A. Hinde). London: Cambridge University Press (1970).Google Scholar
  27. Hanström, B.: Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere. Berlin: Springer (1928).Google Scholar
  28. Hebb, D.O.: “The Organisation of Behaviour”. New York: J. Wiley (1949).Google Scholar
  29. von Helversen, O.: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. comp. Physiol. 80, 439–472 (1972).CrossRefGoogle Scholar
  30. Herz, M.J.: Interference with one-trial appetitive and aversive learning by ether and ECS. J. Neurobiol. 1, 111–122 (1969).PubMedCrossRefGoogle Scholar
  31. Holmgren, N.: Zur vergleichenden Anatomie des Giehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden, Crustanceen, Myriapoden und Insekten. K. svenska Vetensk-Akad. Handl. 56, 1–303 (1916).Google Scholar
  32. Horridge, G.A.: Learning of leg position by the ventral nerve cord in headless insects. Proc. R. Soc. 157, 33–52 (1962).CrossRefGoogle Scholar
  33. Horridge, G.A.: “Interneurones”, 436 pp. London: W.H. Freeman (1968).Google Scholar
  34. Hoyle, G.: Neurophysiological studies on “learning” in headless insects. In “The Physiology of the Insect Central Nervous System” (Eds., J.E. Treherne and J.W.L. Beament), pp. 203–232. London / New York: Academic Press (1965).Google Scholar
  35. Hoyle, G.: Cellular mechanisms underlying behaviour — Neuroethology. Adv. Insect Physiol. 7, 349–444 (1970).CrossRefGoogle Scholar
  36. Huber, F.: Brain controlled behaviour in Orthopterans. In “The Physiology of the Insect Central Nervous System” (Eds., J.E. Treherne and J.W.L. Beament), pp. 233–246. London / New York: Academic Press (1965).Google Scholar
  37. Huber, F.: Central control of movements and behaviour in invertebrates. In “Invertebrate Central Nervous Systems” (Ed., C.A.G. Wiersma), pp. 333–354. Chicago: Chicago University Press (1967).Google Scholar
  38. Hydén, K., Lange, P.W.: Protein changes in nerve cells related to learning and conditioning. In “The Neurosciences. Second study program” (Ed., F.O. Schmitt), pp. 278–289. New York: Rockefeller University Press (1970).Google Scholar
  39. Jarvik, M.E.: Consolidation of memory. In “Psychopharmacology: A Review of Progress” (Eds., D.E. Efron et al.), pp. 885–889. Washington: U.S. Government Printing Office, PHS Publ. 1839. (1968).Google Scholar
  40. Jawlowski, H.: Über der Gehirnbau der Käfer. Z. Morph. Ökol. Tiere 22, 67–91 (1936).CrossRefGoogle Scholar
  41. John, E.R.: “Mechanisms of Memory”. New York: Academic Press (1967).Google Scholar
  42. John, E.R.: Switchboard versus statistical theories of learning and memory. Science, N.Y. 177, 850–864 (1972).CrossRefGoogle Scholar
  43. Kaiser, W.: A preliminary report on the analysis of the optomotor system of the honeybee: single unit recording during stimulation with spectral light. In “Information Processing in the Visual Systems of Arthropods” (Ed., R. Wehner), pp. 167–170. Berlin, Heidelberg, New York: Springer (1972).CrossRefGoogle Scholar
  44. Kaiser, W., Liske, E.: A preliminary report on the analysis of the optomotor system of the honeybee: behavioural studies with spectral lights. In “Information Processing in the Visual Systems of Arthropods” (Ed., R. Wehner), pp. 163–166. Berlin, Heidelberg, New York: Springer (1972).CrossRefGoogle Scholar
  45. Kandel, E.R., Tauc, L.: Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. J. Physiol. (Lond.) 181, 1–27 (1965).Google Scholar
  46. Kandel, E.R., Castellucci, V., Pinsker, H., Kupfermann, I.: The role of synaptic plasticity in the short-term modification of behaviour. In.“Short-term Changes in Neural Activity and Behaviour” (Eds., G. Horn and R.A. Hinde), pp. 281–322. London: Cambridge University Press (1970).Google Scholar
  47. Kandel, E.R., Spenser, W.A.: Cellular neurophysiological approaches in the study of learning. Physiol. Rev. 48, 65–134 (1968).PubMedGoogle Scholar
  48. Kuwabara, M.: Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene (Apis mellifica). J. Fac. Sci. Hokkaido Univ. (VI: Zool.) 13, 458–467 (1957).Google Scholar
  49. Lashley, K.S.: In search of the engram. Symp. Soc. exp. Biol. 4, 454–482 (1950).Google Scholar
  50. Leutscher-Hazelhoff, J.T., Kuiper, J.W.: Clock-spikes in the Calliphora optic lobe and a hypothesis of the organisation of the compound eye. In “The Functional Organisation of the compound eye” (Ed., C.G. Bernhard), pp. 483–492. Oxford: Symp. Publ. Press. Oxford. (1966).Google Scholar
  51. Lindauer, M.: Allgemeine Sinnesphysiologie, Orientierung im Raum. Fortschr. Zool. 16, 58–140 (1963).PubMedGoogle Scholar
  52. Lindauer, M.: Lernen und Gedächtnis, Versuche an der Honigbiene. Naturwissenschaften 57, 463–467 (1970).PubMedCrossRefGoogle Scholar
  53. Lippold, O.C.J.: Long-lasting changes in the activity of cortical neurones. In “Short-term Changes in Neural Activity and Behaviour” (Eds., G. Horn and R.A. Hinde), pp. 405–432. London: Cambridge University Press (1970).Google Scholar
  54. Maldonado, H.: Effects of electroconvulsive shock on memory in Octopus vulgaris Lamarck. Z. vergl. Physiol. 59, 25–37 (1968).CrossRefGoogle Scholar
  55. Maldonado, H.: Further investigations on the effect of electroconvulsive shock (ECS) on memory in Octopus vulgaris. Z. vergl. Physiol. 63, 113–118 (1969).CrossRefGoogle Scholar
  56. Manor, H., Goodman, D., Stent, G.S.: RNA chain growth rates in Escherichia coli, J. molec. Biol. 39, 1–29 (1969).PubMedCrossRefGoogle Scholar
  57. Markl, H., Lindauer, M.: Physiology of insect behaviour. In “The Physiology of Insecta” (Ed., M. Rockstein), Vol. II, pp. 1–122. New York: Academic Press (1965).Google Scholar
  58. Martin, H.: Zur Nahorientierung der Biene im Duftfeld Zugleich ein Nachweis für die Osmotropotaxis bei Insekten. Z. vergl. Physiol. 48, 481–533 (1964).Google Scholar
  59. Masuhr, T., Menzel, R.: Learning experiments on the use of side-specific information in the olfactory and visual system in the honey bee (Apis mellifica). In “Information Processing in the Visual Systems of Arthropods” (Ed., R. Wehner), pp. 315–322. Berlin, Heidelberg, New York: Springer-Verlag (1972).CrossRefGoogle Scholar
  60. Maynard, D.M.: Organisation of central ganglia. In “Invertebrate Nervous Systems” (Ed., C.A.G. Wiersma), pp. 231–258. Chicago: Chicago University Press (1967).Google Scholar
  61. McGaugh, J.L.: Time-dependent processes in memory storage. Science, N.Y. 1533, 1351–1358 (1966).CrossRefGoogle Scholar
  62. McGaugh, J.L.: Facilitation of memory storage processes. In “The Future of the Brain Sciences” (Ed., S. Bogoch), pp. 355–370. New York: Plenum Press (1969).Google Scholar
  63. McGaugh, J.L., Zornetzer, S.F., Gold, P.E., Landfield, P.W.: Modification of memory systems: some neurobiological aspects. Q. Rev. Biophys. 5, 163–186 (1972).PubMedCrossRefGoogle Scholar
  64. Menzel, R.: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z. vergl. Physiol. 56, 22–62 (1967).CrossRefGoogle Scholar
  65. Menzel, R.: Das Gadächtnis der Honigbiene fur Spektralfarben. I. Kurzzeitiges und Langzeitiges Behalten. Z. vergl. Physiol. 60, 82–102 (1968).CrossRefGoogle Scholar
  66. Menzel, R.: Das Gadächtnis der Honigbiene fur Spektralfarben. II. Umlernen und Mehrfachlernen. Z. vergl. Physiol. 63, 290–309 (1969).CrossRefGoogle Scholar
  67. Menzel, R.: Spectral response of moving detecting and “sustaining” fibres in the optic lobe of the bee. J. comp. Physiol. 82, 135–150 (1973).CrossRefGoogle Scholar
  68. Menzel, R., Erber, J.: The influence of the quantity of reward on the learning performance in honeybees. Behaviour 41, 27–42 (1972).CrossRefGoogle Scholar
  69. Menzel, R., Freudel, H., Rühl, U.: Rassenspezifische Lernunterschiede bei der Honigbiene. Apidologie 4, 1–24 (1973).CrossRefGoogle Scholar
  70. Menzel, R., Snyder, A.: The colour vision system in the honey bee. Single cell recording in retinula cells. J. comp. Physiol. (In press).Google Scholar
  71. Messenger, J.B.: Two stage recovery of a response in Sepia. Nature, Lond. 232, 202–203 (1971).CrossRefGoogle Scholar
  72. Miller, A.: Vergleich der Vergessenskurven für Reproduzieren und Wiederkennen von sinnlosem Material. Z. exp. angew. Psychol. 7, 29–38 (1967).Google Scholar
  73. Opfinger, E.: Über die Orientierung der Biene an der Futterstelle. Z. vergl. Physiol. 15, 431–487 (1931).CrossRefGoogle Scholar
  74. Pandazis, G.: Über die relative Ausbildung der Gehirnzentren bei biologisch verschiedenen Ameisenarten. Z. Morph. Ökol. Tiere 18, 114–169 (1930).CrossRefGoogle Scholar
  75. Paolino, R.M., Levy, H.M.: Amnesia produced by spreading depression and ECS: Evidence for time-dependent memory trace localization. Science, N.Y. 172, 746–749 (1971).CrossRefGoogle Scholar
  76. Pareto, A.: Die zentrale Verteilung der Fühlerafferenz bei Arbeiterinnen der Honigbiene (Apis mellifica). Z. Zellforsch, mikrosk. Anat. 131, 109–140 (1972).CrossRefGoogle Scholar
  77. Pflumm, W.: Beziehungen zwischen Putzverhalten und Sammelbereitschaft bei der Honigbiene. Z. vergl. Physiol. 64, 1–36 (1969a).CrossRefGoogle Scholar
  78. Pflumm, W.: Stimmungsäriderungen der Biene wahrend des Aufenthalts an der Futterquelle. Z. vergl. Physiol. 65, 299–323 (1969b).CrossRefGoogle Scholar
  79. Pietschker, H.: Das Gehirn der Ameise. Jena. Z. Naturw. 47, 43–114 (1911).Google Scholar
  80. Rau, G.: Zur Steuerung der Honigmagenfüllung sammelnder Bienen an einer künstlichen Futterquelle. Z. vergl. Physiol. 66, 1–21 (1970).CrossRefGoogle Scholar
  81. Riege, W.H., Cherkin, A.: One trial learning and biphasic time course of performance in the goldfish. Science, N.Y. 172, 966–968 (1971).CrossRefGoogle Scholar
  82. Sanders, G.D., Barlow, J.J.: Variation in retention performance during long term memory formation. Nature, Lond. 232, 203–204 (1971).CrossRefGoogle Scholar
  83. Schürmann, F.W.: Über die Struktur der Pilzkörper des Insektengehirns. I. Synapsen im Pedunculus. Z. Zellforsch, mikrosk. Anat. 103, 365–381 (1970).CrossRefGoogle Scholar
  84. Schürmann, F.W.: Über die Struktur der Pilzkörper des Insektengehirns. II. Synaptische Schaltungen im α-Lobus des Heimchens Acheta domesticus L. Z. Zellforsch, mikrosk. Anat. 127, 240–257 (1972).CrossRefGoogle Scholar
  85. Snyder, A., Menzel, R., Laughlin, S.: Structure and function of the fused Rhabdom. J. comp. Physiol. (In press)Google Scholar
  86. Tauc, L., Epstein, R.: Heterosynaptic facilitation as a distinct mechanism in Aplysia. Nature, Lond. 214, 724–725 (1967).CrossRefGoogle Scholar
  87. Thorpe, W.H.: “Learing and Instinct in Animals”, 2nd Edition. London: Methuen (1963).Google Scholar
  88. Ungar, G.: Role of proteins and peptides in learning and memory. In “Molecular Mechanisms in Memory and Learning” (Ed., G. Ungar), pp. 149–175. New York: Plenum Press (1970).Google Scholar
  89. Vowles, D.M.: The structure and connexions of the corpora pedunculata in bees and ants. Q. Jl microsc. Sci. 96, 239–255 (1955).Google Scholar
  90. Vowles, D.M.: Olfactory learning and brain lesions in the wood ant (Formica rufa). J. comp. physiol. Psychol. 58, 105–111 (1964a).PubMedCrossRefGoogle Scholar
  91. Vowles, D.M.: Models and the insect brain. In “Neural Theory and Modeling” (Ed., R.F. Reiss). Stanford Calif.: Stanford University Press (1964b).Google Scholar
  92. Vowles, D.M.: Interocular transfer, brain lesions, and maze learning in the wood ant, Formica rufa. In “Chemistry of Learning” (Eds., W.C. Corning and S.C. Ratner), pp. 425–447. N.York: Plenum Press (1967).Google Scholar
  93. Vuillaume, M.: La retention mémorique chez Apis mellifica, Annls Inst. natn. Rech, agron., Paris 2, 159–170 (1959).Google Scholar
  94. Witthöft, W.: Absolute Anzahl und Verteilung der Zellen im Hirn der Honigbiene. Z. Morph, ökol. Tiere. 61, 160–184 (1967).Google Scholar
  95. Young, J.Z.: “A Model of the Brain”. London: Oxford University Press. (1964).Google Scholar
  96. Young, J.Z.: Short and long memories in Octopus and the influence of the vertical lobe system. J. exp. Biol. 52, 385–393 (1970).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • R. Menzel
    • 1
  • J. Erber
    • 1
  • T. Masuhr
    • 1
  1. 1.Zoologisches InstitutTechnische HochschuleDarmstadtW. Germany

Personalised recommendations