Skip to main content

Insect Flight as a System for the Study of the Development of Neuronal Connections

  • Chapter
Experimental Analysis of Insect Behaviour

Abstract

Behavioural acts result from patterns of activity in the nervous system and this implies a certain ordering of connections between neurones. The developmental process by which correct contacts between neurones are established must require considerable accuracy and, by investigating the way in which these connections are formed during development, it may be possible to determine the rules which regulate the growth of nerve terminals in the neuropile. In order to do this, it is necessary first to make an exact description of a set of connections and their development. The appearance of a new behaviour pattern implies that new neuronal circuitry has become functional, and this should provide a basis for making this description. This review examines the development of the neural control of locust flight to determine whether it is a suitable system for such an investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J.S.: Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes termini fera. I. Development of adult behaviour. (In prep, a)

    Google Scholar 

  • Altman, J.S.: Changes in the flight motor pattern during the development of the Australian plague locust, Chortoicetes termini fera. II. Establishment of the alternating motor pattern. (In prep, b)

    Google Scholar 

  • Altman, U.S., Bell, E.M.: A rapid technique for the demonstration of nerve cell bodies in invertebrate central nervous systems. (In prep.)

    Google Scholar 

  • Bentley, D.R.: Intracellular activity in cricket neurons during the generation of behaviour patterns. J. Insect Physiol. 15, 677–699 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D.R.: A topological map of the locust flight system motor neurons. J. Insect Physiol. 16, 905–918 (1970).

    Article  Google Scholar 

  • Bentley, D.R.: Postembryonic development of insect motor systems. In “Developmental Neurobiology of Arthropods” (Ed. D. Young), pp. 147–177. London: Cambridge University Press. (1973).

    Google Scholar 

  • Bentley, D.R., Hoy, R.R.: Postembryonic development of adult motor patterns in crickets: a neural analysis. Science, N.Y. 170, 1409–1411 (1970).

    Article  CAS  Google Scholar 

  • Braitenberg, V.: Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7, 235–242 (1970).

    PubMed  CAS  Google Scholar 

  • Burrows, M.: The morphology of an elevator and a depressor motoneuron of the hind wing of a locust. J. comp. Physiol. 83, 165–178 (1973a).

    Article  Google Scholar 

  • Burrows, M.: Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J. comp. Physiol. 82, 59–78 (1973b).

    Article  Google Scholar 

  • Burrows, M.: The role of delayed excitation in the co-ordination of some metathoracic flight motoneurons of a locust. J. comp. Physiol. 83, 135–164 (1973c)

    Article  Google Scholar 

  • Camhi, J.M.: Yaw-correcting postural changes in locusts. J. exp. Biol. 52, 519–531 (1970a).

    Google Scholar 

  • Camhi, J.M.: Sensory control of abdomen posture in flying locusts. J. exp. Biol. 52, 533–537 (1970b).

    Google Scholar 

  • Campbell, J.I.: The anatomy of the nervous system of the mesothorax of Locusta migratoria migratorioides R.& F. Proc. zool. Soc. Lond. 137, 403–432 (1961).

    Google Scholar 

  • Cohen, M.J., Jacklet, J.W.: The functional organization of motor neurons in an insect ganglion. Phil. Trans. R. Soc. (B) 252, 561–572 (1967).

    Article  Google Scholar 

  • Crossman, A.R., Kerkut, G.A., Pitman, R.M., Walker, R.J.: Electrically excitable nerve cell bodies in the central ganglia of two insect species Periplaneta americana and Schistoceroa gregaria. Investigation of cell geometry and morphology by intracellular dye injection. Comp. Biochem. Physiol. 40, 579–594 (1971).

    Article  Google Scholar 

  • Gettrup, E.: Thoracic proprioceptors in the flight system of locusts. Nature, Lond. 193, 498–499 (1962).

    Article  Google Scholar 

  • Gettrup, E.: Sensory regulation of wing twisting in locusts. J. exp. Biol. 44, 1–16 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Gewecke, M.: Die Regelung der Fluggeschwindigkeit bei Heuschrecken und ihre Bedeutung für die Wanderflüge. Verh. dt. zool. Ges. 65, 247–250 (1972).

    Google Scholar 

  • Guthrie, D.M.: Observations on the nervous system of the flight apparatus in the locust Schistocerca gregaria. Q. Jl microsc. Sci. 105, 183–201 (1964).

    Google Scholar 

  • Gymer, A., Edwards, J.S. The development of the insect nervous system. I. An analysis of postembryonic growth in the terminal ganglion of Acheta domestious. J. Morph. 123, 191–197 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hinkle, M., Camhi, J.M.: Locust motoneurons: bursting activity correlated with axon diameter. Science, N.Y. 175, 553–556 (1972).

    Article  CAS  Google Scholar 

  • Hong, C.: Descriptive and experimental studies on the embryonic development of Schistoceroa gregaria (Forskål). Ph.D. Thesis, University of London (1968).

    Google Scholar 

  • Horridge, G.A., Meinertzhagen, I.A.: The accuracy of the patterns of connexions of the first-and second-order neurons of the visual system of Calliphora. Proc. R. Soc. (B) 175, 69–82 (1970).

    Article  CAS  Google Scholar 

  • Hoyle, G.: Cellular mechanisms underlying behavior — neuroethology. Adv. Insect Physiol. 7, 349–444 (1970).

    Article  Google Scholar 

  • Hoyle, G., Burrows, M.: Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified neurons in the metathoracic ganglion. J. Neurobiol. 4, 3–41 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Iles, J.F.: Structure and synaptic activation of the fast coxal depressor motoneurone of the cockroach, Periplaneta americana. J. exp. Biol. 56, 647–656 (1972).

    PubMed  CAS  Google Scholar 

  • Kendig, J.J.: Motor neurone coupling in locust flight. J. exp. Biol. 48, 389–404 (1968).

    PubMed  CAS  Google Scholar 

  • Kutsch, W.: The development of the flight pattern in the desert locust, Schistocerca gregaria. Z. vergl. Physiol. 74, 156–168 (1971).

    Article  Google Scholar 

  • Marotte, L.R., Mark, R.F.: The mechanism of selective reinnervation of fish eye muscle. II. Evidence from electronmicroscopy of nerve endings. Brain Res. 19, 53–62 (1970).

    Article  PubMed  CAS  Google Scholar 

  • MöSs, D.: Sinnesorgane im Bereich des Flügels der Feldgrille (Gryllus campestris L.) und ihre Bedeutung für die Kontrolle der Singbewegung und die Einstellung der Flügellage. Z. vergl. Physiol. 73, 53–83 (1971).

    Article  Google Scholar 

  • Neville, A.C.: Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. exp. Biol. 40, 123–136 (1963).

    Google Scholar 

  • Nicholls, J.G., Purves, D.: Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol., Lond. 209, 647–667 (1970).

    PubMed  CAS  Google Scholar 

  • Otsuka, M., Kravitz, E.A., Potter, D.D.: Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J. Neurophysiol. 30, 725–752 (1967).

    PubMed  CAS  Google Scholar 

  • Page, C.H.: Unit responses in the metathoracic ganglion of the flying locust. Comp. Biochem. Physiol. 37, 565–571 (1970).

    Article  Google Scholar 

  • Panov, A.A.: Correlations in the ontogenetic development of the central nervous system in the house cricket Gryllus domesticus L. and the mole cricket Gryllotalpa gryllotalpa L. (Orthoptera, Grylloidea). Ent. Rev., Wash. 45, 179–185 (1966).

    Google Scholar 

  • Pitman, R.M., Tweedle, C.D., Cohen, M.J.: Branching of central neurons: intracellular cobalt injection for light and electron miscroscopy. Science, N.Y. 176., 412–414 (1972).

    Article  Google Scholar 

  • Sbrenna, G.: Postembryonic growth of the ventral nerve cord in Schistocerca gregaria Forsk. (Orthoptera: Acrididae). Boll. Zool. 38, 49–74 (1971).

    Article  Google Scholar 

  • Selverston, A.I., Kennedy, D.: Structure and function of identified nerve cells in the crayfish. Endeavour 28, 107–113 (1969).

    PubMed  CAS  Google Scholar 

  • Snodgrass, R.E.: The thoracic mechanism of a grasshopper and its antecedents. Smithson. Misc. Colins 82, 1–111 (1929).

    Google Scholar 

  • Stretton, A.O.W., Kravitz, E.A.: Neuronal geometry: determination with a technique of intracellular dye injection. Science, N.Y. 162, 132–134 (1968).

    Article  CAS  Google Scholar 

  • Tyrer, N.M., Altman, J.S.: Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. Brain Res. (In press).

    Google Scholar 

  • Weber, T.: Stabilisierung des Flugrhythmus durch “Erfahrung” bei der Feldgrille. Naturwissenshaften 59, 366 (1972).

    Article  Google Scholar 

  • Wilson, D.M.: The central nervous control of flight in a locust. J. exp. Biol. 38, 471–490 (1961).

    Google Scholar 

  • Wilson, D.M.: Bifunctional muscles in the thorax of grasshoppers. J. exp. Biol. 39, 669–677 (1962).

    Google Scholar 

  • Wilson, D.M.: The origin of the flight-motor command in grasshoppers. In “Neural Theory and Modeling” (Ed. R. Reiss) pp. 331–345. Stanford: Stanford University Press (1964).

    Google Scholar 

  • Wilson, D.M.: The nervous control of insect flight and related behavior. Adv. Insect Physiol. 5, 289–338 (1968).

    Article  Google Scholar 

  • Wilson, D.M., Gettrup, E.: A stretch reflex controlling wing-beat frequency in grasshoppers. J. exp. Biol. 40, 171–185 (1963).

    Google Scholar 

  • Wilson, D.M., Wyman, R.J.: Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J. 5, 121–143 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Young, J.Z.: Centres for touch discrimination in Octopus. Phil. Trans. R. Soc. (B) 249, 45–67 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Altman, J.S., Tyrer, N.M. (1974). Insect Flight as a System for the Study of the Development of Neuronal Connections. In: Barton Browne, L. (eds) Experimental Analysis of Insect Behaviour. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86666-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86666-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86668-5

  • Online ISBN: 978-3-642-86666-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics