From Crucibles Through Subduction to Batholiths

  • P. J. Wyllie


There are many lines of evidence to be evaluated in considering the identity and origin of primary magmas; conclusions reached cannot be valid unless they satisfy the constraints imposed by phase equilibrium experiments. Interpretation of laboratory phase equilibrium experiments is not always unambiguous. Experiments in small crucibles in the presence of water under pressure satisfied many petrologists that batholithic granites involved partial fusion of crustal rocks during the culmination of regional metamorphism. Then, the concept of subducted oceanic lithosphere provided a relatively high-silica source material for magma generation at mantle depths, and dehydration of the sinking slab provided water to lower the melting temperature of overlying mantle peridotite. Batholiths may include material derived from magmas whose genesis was initiated in all three environments. Phase equilibrium data are available to explore the melting products of subducted micaceous sediments and calcareous oozes trapped within basalt. Limestones or siliceous limestones could escape complete dissociation or melting to considerable depths, possibly for long-term storage in the mantle. Phase relationships in the system basalt-andesite-rhyolite-H2O through the pressure interval from depths where metamorphosed basaltic ocean crust melts, to the near-surface levels where batholiths are emplaced and andesites are erupted, is fundamental for understanding this magmatic system. On balance, the phase equilibrium data do not favor the concept of primary granite or tonalite from mantle or subducted crust. Primary water-undersaturated granite magma is a normal product of partial fusion of the crust, but temperatures of normal regional metamorphism are too low to generate tonalite liquids. The water content of large batholithic bodies is probably less than 1.5%. Uprise and crystallization produces water-saturated liquids in the upper regions and margins of magma chambers, for satellite intrusions or eruption. Gravity drives magma and energy upward from subducted oceanic crust, and the final, uppermost expression of the process is represented by the batholiths and attendant volcanoes.


Oceanic Crust Mantle Peridotite Alkali Feldspar Hydrous Mineral Primary Magma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. C, Boettcher, A. L., Mailand, G.: Amphiboles in andesite and basalt: I. Stability as a function of \(P - T - f_{o_2 } \). Am. Mineral. 60, 1069–1085 (1975).Google Scholar
  2. Armstrong, R. L.: A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys. 6, 175–199 (1968).CrossRefGoogle Scholar
  3. Armstrong, R. L.: Isotopic and chemical constraints on models of magma genesis in volcanic arcs. Earth Planet. Sci. Lett. 12, 137–142 (1971).CrossRefGoogle Scholar
  4. Biggar, G. M., O’Hara, M. J.: Reversibility and equilibrium in atmospheric pressure experiments. In: Progress in Experimental Petrology. Nat. Envir. Res. Counc. Publ. Ser. D, No. 2, London, 1972.Google Scholar
  5. Boettcher, A. L.: Volcanism and orogenic belts—the origin of andesites. Tectonophysics 17, 223–240 (1973).CrossRefGoogle Scholar
  6. Boettcher, A. L.: Experimental igneous petrology. Rev. Geophys. Space Phys. 13, 75–79 (1975).CrossRefGoogle Scholar
  7. Boettcher, A. L., Wyllie, P. J.: Melting of granite with excess water to 30 kilobars pressure. J. Geol. 76, 135–244 (1968).Google Scholar
  8. Bowen, N. L., Tuttle, O. F.: The system NaAlSi3O8-KAlSi3O8-H2O. J. Geol. 58, 489–511 (1950).CrossRefGoogle Scholar
  9. Brown, G. C., Fyfe, W. S.: The production of granitic melts during ultrametamorphism. Contr. Mineral. Petrol. 28, 310–318 (1970).CrossRefGoogle Scholar
  10. Busch, W., Schneider, G., Mehnert, K. R.: Initial melting at grain boundaries, Part II: Melting in rocks of granodioritic, quartzdioritic and tonalitic composition. N. Jb. Miner. Mh. 8H, 345–370 (1974).Google Scholar
  11. Carmichael, I. S. E., Turner, F. J., Verhoogen, J: Igneous Petrology. New York: McGraw-Hill, 1974, 739 p.Google Scholar
  12. Chappell, B. W., White, A. J. R.: Two contrasting granite types. Pacific Geol. 8, 173–174 (1974).Google Scholar
  13. Eggler, D. H.: Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral. Petrol. 34, 261–271 (1972).CrossRefGoogle Scholar
  14. Faure, G., Powell, J. L., Strontium Isotope Geology. New York: Springer, 1972.Google Scholar
  15. Fitton, J. G.: The generation of magmas in island arcs. Earth Planet. Sci. Lett. 77, 63–67 (1971).CrossRefGoogle Scholar
  16. Fyfe, W. S.: Hydrothermal synthesis and determination of equilibrium between minerals in the subliquidus region. Geol. 68, 553–566 (1960).CrossRefGoogle Scholar
  17. Fyfe, W. S.: The generation of batholiths. Tectonophysics 17, 273–283 (1973).CrossRefGoogle Scholar
  18. Gastil, R. G.: Plutonic zones in the Peninsular Ranges of southern California and northern Baja California. Geology 3, 361–363 (1975).CrossRefGoogle Scholar
  19. Geotimes: Deep sea drilling project, 16-18, December 1974.Google Scholar
  20. Gibbon, D. L., Wyllie, P. J.: Experimental studies of igneous rock series: The Farrington Complex, North Carolina and the Star Mountain Rhyolite, Texas. J. Geol. 77, 221–239 (1969).CrossRefGoogle Scholar
  21. Green, D. H.: The origin of basaltic and nephelinitic magmas in the earth’s mantle. Tectonophysics 7, 409–422 (1969).CrossRefGoogle Scholar
  22. Green, D. H.: Contrasted melting relations in a pyrolite upper mantle under midoceanic ridge, stable crust and island arc environments. Tectonophysics 17, 285–297 (1973).CrossRefGoogle Scholar
  23. Green, T. H,: Crystallization of calc-alkaline andesite under controlled highpressure conditions. Contr. Mineral. Petrol. 34, 150–166 (1972).CrossRefGoogle Scholar
  24. Green, T. H.: Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition. Geology 4, 85–88 (1976).CrossRefGoogle Scholar
  25. Green, T. H., Ringwood, A. E.: Genesis of the calc-alkaline igneous rock suite. Contr. Mineral. Petrol. 18, 105–162 (1968).CrossRefGoogle Scholar
  26. Greenwood, H. J.: Mineral equilibria in the system MgO-SiO2-H2O-CO2. In: Researches in Geochemistry. Abelson, P. H. (ed.). New York: Wiley, 1967, Vol. II, pp 542–547.Google Scholar
  27. Haller, J.: Der “Zentrale Metamorphe Komplex” von Nordöstgronland. Teil I. Die geologische Karte von Suess Land, Gletscherland und Goodenoughs Land. Medd. Grønland 73(I), 1–174 (1955).Google Scholar
  28. Haller, J.: Geology of the East Greenland Caledonides. New York: Interscience, 1971.Google Scholar
  29. Hamilton, W.: Mesozoic California and the underflow of Pacific mantle. Geol. Soc. Am. Bull. 80, 2409–2430 (1969).CrossRefGoogle Scholar
  30. Hamilton, W., Myers, W. B.: The Nature of Batholiths. U.S. Geol. Survey Prof. Paper 554-C, 1967, 30 p.Google Scholar
  31. Huang, W. L., Wyllie, P. J.: Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contr. Mineral. Petrol. 42, 1–14 (1973).CrossRefGoogle Scholar
  32. Hutchison, W. W.: Metamorphic framework and plutonic styles in the Prince Rupert region of the Central Coast Mountains, British Columbia. Can. J. Earth Sci. 7, 376–405 (1970).CrossRefGoogle Scholar
  33. Irving, A. J., Wyllie, P. J.: Melting relationships in CaO-CO2 and MgO-CO2 to 36 kilobars, with comments on CO2 in the mantle. Earth Planet. Sci. Lett. 20, 220–225 (1973).CrossRefGoogle Scholar
  34. Irving, A. J., Wyllie, P. J.: Subsolidus and melting relationships for calcite, magnesite, and the join CaCO3-MgCO3 to 36 kilobars. Geochim. Cosmochim. Acta 39, 35–53 (1975).CrossRefGoogle Scholar
  35. Kerrick, D. M.: Review of metamorphic mixed volatile (H2O-CO2) equilibria. Am. Mineral. 59, 729–762 (1974).Google Scholar
  36. Kleppa, O. J., Newton, R. C: The role of solution calorimetry in the study of mineral equilibria. Fortschr. Mineral. 52, 3–20 (1975).Google Scholar
  37. Kushiro, I.: Discussion of the paper “The origin of basaltic and nephelinitic magmas in the earth’s mantle” by D. H. Green. Tectonophysics 7, 427–436 (1969).CrossRefGoogle Scholar
  38. Kushiro, I.: Origin of some magmas in oceanic and circum-oceanic regions. Tectonophysics 17, 211–222 (1973).CrossRefGoogle Scholar
  39. Lambert, I. B., Wyllie, P. J.: Stability of hornblende and a model for the low velocity zone. Nature (London) 219, 1240–1241 (1968).CrossRefGoogle Scholar
  40. Lambert, I. B., Wyllie, P. J.: Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications. J. Geol. 80, 693–708 (1972).CrossRefGoogle Scholar
  41. Lambert, I. B., Wyllie, P. J.: Melting of tonalite and crystallization of andesite liquid with excess water to 30 kilobars. J. Geol. 82, 88–97 (1974).CrossRefGoogle Scholar
  42. Luth, W. C, Jahns, R. H., Tuttle, O. F.: The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. 69, 759–773 (1964).CrossRefGoogle Scholar
  43. Maaløe, S., Wyllie, P. J.: Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contr. Mineral. Petrol. 52, 175–191 (1975).CrossRefGoogle Scholar
  44. Marsh, B. D., Carmichael, I. S. E.: Benioff zone magmatism. J. Geophys. Res. 79, 1196–1206 (1974).CrossRefGoogle Scholar
  45. Mehnert, K. R., Büsch, W., Schneider, G.: Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites. N. Jb. Mineral. Mh. 4H, 165–183 (1973).Google Scholar
  46. Moore, J. C: Selective subduction. Geology 3, 530–532 (1975).CrossRefGoogle Scholar
  47. Mysen, B. O., Boettcher, A. L.: Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressures and temperatures as a function of controlled activities of water, hydrogen, and carbon dioxide. J. Petrol. 16, 549–593 (1975).Google Scholar
  48. Mysen, B. O., Kushiro, I., Nicholls, I. A., Ringwood, A. E.: A possible mantle origin for andesitic magmas. Discussion of a paper by Nicholls and Ringwood. 1. Opening discussion, 2. Reply to opening discussion, 3. Comments on the reply of Nicholls and Ringwood, and 4. Final reply. Earth Planet. Sci. Lett. 21, 221–229 (1974).CrossRefGoogle Scholar
  49. Nehru, C. E., Wyllie, P. J.: Compositions of glasses from St. Paul’s peridotite partially melted at 20 kilobars. J. Geol. 83, 455–471 (1975).CrossRefGoogle Scholar
  50. Newton, R. C., Charlu, T. V., Kleppa, O. J.: A calorimetric investigation of the stability of anhydrous magnesium cordierite with application to granulite facies metamorphism. Contr. Mineral. Petrol. 44, 295–311 (1974).CrossRefGoogle Scholar
  51. Nicholls, I. A.: Liquids in equilibrium with peridotitic mineral assemblages at high water pressures. Contr. Mineral. Petrol. 45, 289–316 (1974).CrossRefGoogle Scholar
  52. Nicholls, I. A., Ringwood, A. E.: Effect of water on olivine stability in tholeiites and the production of silica-saturated magmas in the island-arc environment. J. Geol. 81, 285–300 (1973).CrossRefGoogle Scholar
  53. Noble, D. C., Bowman, H. R., Hebert, A. J., Silberman, M. L., Heropoulos, C. E., Fabbi, B. P., Hedge, C. E.: Chemical and isotopic constraints on the origin of low-silica latite and andesite from the Andes of central Peru. Geology 3, 501–504 (1975).CrossRefGoogle Scholar
  54. Orville, P. M.: Alkali exchange betwen vapor and feldspar phases. Am. J. Sci. 261, 201–237 (1963).CrossRefGoogle Scholar
  55. Oxburgh, E. R., Turcotte, D. L.: Thermal structure of island arcs. Geol. Soc. Am. Bull. 81, 1665–1688 (1970).CrossRefGoogle Scholar
  56. Pitcher, W. S.: The Mesozoic and Cenozoic batholiths of Peru. Pacific Geol. 8, 51–62 (1974).Google Scholar
  57. Piwinskii, A. J.: Experimental studies of igneous rock series: Central Sierra Nevada batholith, California. J. Geol. 76, 548–570 (1968).CrossRefGoogle Scholar
  58. Piwinskii, A. J.: Experimental studies of igneous rock series, central Sierra Nevada batholith, California: Part II. Neues Jahrb. Mineral. Monatsh. 6, 193–215 (1973a).Google Scholar
  59. Piwinskii, A. J.: Experimental studies of granitoids from the Central and Southern Coast Ranges, California. Tschermaks Mineral. Petrogr. Mitt. 20, 107–130 (1973b).CrossRefGoogle Scholar
  60. Piwinskii, A. J.: Experimental studies of granitoid rocks near the San Andreas fault zone in the Coast and Transverse ranges and Mojave Desert, California. Tectonophysics 25, 217–231 (1975).CrossRefGoogle Scholar
  61. Piwinskii, A. J., Wyllie, P. J.: Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith, Oregon. J. Geol. 76, 205–234 (1968).CrossRefGoogle Scholar
  62. Piwinskii, A. J., Wyllie, P. J.: Experimental studies of igneous rock series: “Felsic Body Suite” from the Needle Point pluton, Wallowa batholith, Oregon. J. Geol. 78, 52–76 (1970).CrossRefGoogle Scholar
  63. Presnall, D. C, Bateman, P. C.: Fusion relations in the system NaAlSi3O8-CaAl2Si2O8-KAlSi3O8-SiO2-H2O and generation of granite magmas in the Sierra Nevada batholith. Geol. Soc. Am. Bull. 84, 3181–3202 (1973).CrossRefGoogle Scholar
  64. Ramberg, H.: The Origin of Metamorphic and Metasomatic Rocks. Chicago: Univ. Chicago, 1952.Google Scholar
  65. Ramberg, H.: Gravity, Deformation and the Earth’s Crust. London: Academic Press, 1967.Google Scholar
  66. Ramberg, H., DeVore, D. G. W.: The distribution of Fe and Mg in coexisting olivines and pyroxenes. J. Geol. 59, 193–210 (1951).CrossRefGoogle Scholar
  67. Ringwood, A. E.: Composition and Petrology of the Earth’s Mantle. New York: McGraw-Hill, 1975.Google Scholar
  68. Robertson, J. K., Wyllie, P. J.: Experimental studies on rocks from the Deboullie stock, northern Maine, including melting relations in the water-deficient environment. J. Geol. 79, 549–571 (1971a).CrossRefGoogle Scholar
  69. Robertson, J. K., Wyllie, P. J.: Rock-water systems, with special reference to the water-deficient region. A. J. Sci. 271, 252–277 (1971b).CrossRefGoogle Scholar
  70. Roddick, J. A., Hutchison, W. W.: Setting of the Coast Plutonic Complex, British Columbia. Pacific Geol. 8, 91–108 (1974).Google Scholar
  71. Saxena, S. K.: Thermodynamics of Rock-Forming Crystalline Solutions. New York: Springer, 1973.Google Scholar
  72. Steiner, J. C, Jahns, R. H., Luth, W. C.: Crystallization of alkali feldspar and quartz in the haplogranite system NaAlSi3O8-KAlSi3O8-SiO2-H2O at 4 kb. Geol. Soc. Am. Bull. 86, 83–98 (1975).CrossRefGoogle Scholar
  73. Stern, C. R.: Melting products of olivine tholeiite basalt in subduction zones. Geology 2, 227–230 (1974).CrossRefGoogle Scholar
  74. Stern, C. R., Huang, W. L., Wyllie, P. J.: Basalt-andesite-rhyolite-H2O: crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kilobars, with implications for magma genesis. Earth Planet. Sci. Lett. 28, 189–196 (1975).CrossRefGoogle Scholar
  75. Stern, C. R., Wyllie, P. J.: Melting relations of basalt-andesite-rhyolite-H2O and a pelagic red clay at 30 kilobars. Contr. Mineral. Petrol. 42, 313–323 (1973b).CrossRefGoogle Scholar
  76. Stern, C. R., Wyllie, P. J.: Effect of iron absorption by noble-metal capsules on phase boundaries in rock-melting experiments at 30 kilobars. Am. Mineral. 60, 681–689 (1975).Google Scholar
  77. Toksöz, M. N., Minear, J. W., Julian, B. R.: Temperature field and geophysical effects of a downgoing slab. J. Geophys. Res. 76, 1113–1138 (1971).CrossRefGoogle Scholar
  78. Tuttle, O. F., Bowen, N. L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Memoir 74, 153 p. (1958).Google Scholar
  79. Walker, D., Kirkpatrick, R. J., Longhi, J., Hays, J. F.: Crystallization history of lunar picritic basalt sample 12002: phase equilibria and cooling rate studies. Geol. Soc. Bull. 87, 646–656 (1976).CrossRefGoogle Scholar
  80. Wegmann, C. E.: Tectonic patterns at different levels. Geol. Soc. South Africa, annexure to 66, 1–78 (1963).Google Scholar
  81. Whitney, J. A.: The effects of pressure, temperature and \(X_{H_2 O} \) on phase assemblages in four synthetic rock compositions. J. Geol. 83, 1–31 (1975a).CrossRefGoogle Scholar
  82. Whitney, J. A.: Vapor generation in a quartz monzonite magma: a synthetic model with application to porphyry copper deposits. Econ. Geol. 70, 346–358 (1975b).CrossRefGoogle Scholar
  83. Winkler, H. G. F.: Petrogenesis of Metamorphic Rocks, 2nd ed. New York: Springer, 1967.Google Scholar
  84. Winkler, H. G. F., Boese, M., Marcopoulos, T.: Low temperature granitic melts. N. Jb. Miner. Mh. 6H, 245–268 (1975).Google Scholar
  85. Wyllie, P. J.: The role of water in magma generation and initiation of diapiric uprise in the mantle. J. Geophys. Res. 76, 1328–1338 (1971a).CrossRefGoogle Scholar
  86. Wyllie, P. J.: The Dynamic Earth. New York: Wiley, 1971b.Google Scholar
  87. Wyllie, P. J.: Experimental petrology and global tectonics: a preview. In: Experimental Petrology and Global Tectonics. Tectonophysics 17, 189–209 (1973).CrossRefGoogle Scholar
  88. Wyllie, P. J., Tuttle, O. F.: Hydrothermal melting of shales. Geol. Mag. 98, 56–66 (1961).CrossRefGoogle Scholar
  89. Yoder, H. S., Tilley, C. E.: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3, 342–532 (1962).Google Scholar
  90. Zen, E-an: The stability relations of the polymorphs of aluminum silicate: a survey and some comments. Am. J. Sci. 267, 297–309 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • P. J. Wyllie

There are no affiliations available

Personalised recommendations