Advertisement

Bildkontrast in kristallinen Objekten

  • Ludwig Reimer

Zusammenfassung

In elektronenmikroskopischen Abbildungen kristalliner Objekte treten neben den Bildkontrasten, die durch diffuse elastische oder unelastische Streuung durch Dicken- oder Dichteunterschiede entstehen, noch weitere Kontraste durch Braggsche Reflexion an den Netzebenen auf. Die hierdurch hervorgerufenen Scheinstrukturen wirken sich sehr oft störend aus, sind aber andererseits bei genauer Kenntnis ihrer Ursachen und Gesetzmäßigkeiten ein wertvolles Hilfsmittel, um Kristallitgrößen und Kristallstörungen zu erkennen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu § 8

  1. Amelinckx, S.: The direct observation of dislocations, in Solid State Physics, Suppl. 6 (ed. F. Seitz u. D. Turnbull) New York 1964.Google Scholar
  2. Amelinckx, S., and P. Delavignette: Electr. opt. study of basal dislocations in graphite. J. appl. Phys. 31, 2126 (1960).ADSCrossRefGoogle Scholar
  3. Art, A., R. Gevers, and S. Amelinckx: The determination of the type of stacking faults in face centered cubic alloys by means of contrast effects in the electr. micr. Phys. stat. sol. 3, 697 (1963).ADSCrossRefGoogle Scholar
  4. Ashby, M. F., and L. M. Brown: On diffr. contrast from inclusions. Phil. Mag. 8, 1649 (1963).ADSCrossRefGoogle Scholar
  5. Barnes, R. S., and D. J. Mazey: The nature of radiation induced point defect clusters. Phil. Mag. 5, 1247 (1960).ADSCrossRefGoogle Scholar
  6. Barnes, R. S., and D. J. Mazey: The migration and coalescence of inert gas bubbles in metals. Proc. Roy. Soc. A 275, 47 (1963).ADSCrossRefGoogle Scholar
  7. Barnes, R. S., and D. J. Mazey: The movement of He bubbles in uranium dioxide. Proc. 3. Europ. Reg. Conf. EM Prag, Vol. A, 197 (1964).Google Scholar
  8. Bassett, G. A., J. W. Menter, and D. W. Pashley: Moiré patterns On electr. micrographs, and their appl. to the study of dislocations in metals. Proc. Roy Soc. A 246, 345 (1958).ADSCrossRefGoogle Scholar
  9. Bollmann, W.: Radiation damage in graphite. Proc. Europ. Reg. Conf. EM Delft, Vol. I, 330 (1960); J. appl. Phys. 32, 869 (1961).ADSCrossRefGoogle Scholar
  10. Brandon, D. G., and P. Bowden: The low energy ion bombardement of gold. Phil. Mag. 6, 707 (1961).ADSCrossRefGoogle Scholar
  11. Delavignette, P., and S. Amelinckx: Electr. micr. obs. of antiferromagnetic domain walls in NiO. Appl. Phys. Letters 2, 236 (1963).ADSCrossRefGoogle Scholar
  12. Demny, J.: Aussagen des Verdrehungsmoirés über Gitterfehler. Z. Naturforsch. 15a, 194 (1960).ADSGoogle Scholar
  13. Dupouy, G., F. Perrier, R. Uyeda, R. Ayroles, et A. Mazel: Mesure du coeff. d’absorption des electr. acceleres sous des tensions comprises entre 300 et 1200 kV. Proc. Europ. Reg. Conf. EM Prag, Vol. A, 105 (1964). etGoogle Scholar
  14. Essmann, U., u. M. Wilkens: Elektr. mikr. Kontrastexp. an Fehlstellenagglomeraten in neutronenbestrahltem Kupfer. Phys. stat. sol. 4, K 53 (1964).ADSCrossRefGoogle Scholar
  15. Forty, A. J.: The precipitation of lead during decomposition of lead jodide by electr. irradiation. Phil. Mag. 6, 895 (1961).ADSCrossRefGoogle Scholar
  16. Gevers, R.: Dynamical theory of moiré fringe patterns. Phil. Mag. 7, 1681 (1962 a).ADSMATHCrossRefGoogle Scholar
  17. Gevers, R.: On the kinematical theory of diffr. contr. of electr. transm. micr. images of perfect dislocations of mixed type. Phil, Mag. 7, 651 (1962b).ADSMATHCrossRefGoogle Scholar
  18. Gevers, R.: On the kin. theory of diffr. contr. of electr. transm. micr. images of perfect and partial srew dislocations. Phil. Mag. 8, 769 (1963a).ADSMATHCrossRefGoogle Scholar
  19. Gevers, R.: On the dynamical theory of electr. transm. micr. images of dislocations and stacking faults. Phys. stat. sol. 3, 415 (1963b).ADSCrossRefGoogle Scholar
  20. Glossop, A. B., and D. W. Pashley: The direct obs. of anti-phase domain boundaries in ordered copper-gold alloy. Proc. Roy. Soc. A 250, 132 (1959).ADSCrossRefGoogle Scholar
  21. Groves, G. W., and A. Kelly: Interstitial dislocation loops in MgO, Phil. Mag. 6, 1527 (1961); 7, 892 (erratum).ADSCrossRefGoogle Scholar
  22. Groves, G. W., and M. J. Whelan: The determination of the sense of the Burgers vector of a dislocation from its electr. micr. image. Phil. Mag. 7, 1603 (1962).ADSCrossRefGoogle Scholar
  23. Hashimoto, H., A. Howie, and M. J. Whelan: Anomalous electr. absorption effects in metal foils. Phil. Mag. 5, 967 (1960); Proc. Roy. Soc. A 269, 80 (1962).Google Scholar
  24. Hashimoto, H., and M. Mannami: On the contr. of the electr. micr. image due to an edge dislocation. Acta cryst. 13, 363 (1960).CrossRefGoogle Scholar
  25. Hashimoto, H., M. Mannami, and T. Naiki: Dynamical theory of electr. diffr. for the electr. micr. image of crystal lattices. Phil. Trans. Roy. Soc. London 253, 459 (1961).ADSMATHCrossRefGoogle Scholar
  26. Heidenreich, R. D.: Fundamentals of transm. electr. micr. New York 1964.Google Scholar
  27. Hirsch, P. B., A. Howie, and M. J. Whelan: A kinematical theory of diffr. contr. of electr. transm. micr. images of dislocations and other defects. Phil. Trans. Roy. Soc. London A 252, 499 (1960).ADSCrossRefGoogle Scholar
  28. Hirsch, P. B, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan: Electr. micr. of thin crystals. London 1965.Google Scholar
  29. Howie, A., and M. J. Whelan: The dynamical theory of diffr. from dislocations. Proc. Europ. Reg. Conf. EM Delft, Vol. I, 194 (1960).Google Scholar
  30. Howie, A., and M. J. Whelan: Diffr. contr. of electr. micr. images of cristal lattice defects II + III. Proc. Roy. Soc. A 263, 217 (1961); 267, 206 (1962).ADSCrossRefGoogle Scholar
  31. Ito, K., and T. Ito: Crystal interference phenomena in three-stage elect. micr. J. Electronmicr. Japan 1, 18 (1953).Google Scholar
  32. Jössang, T., M. J. Stowell, J. P. Hirth, and J. Lothe: On the determination of stacking fault energies from extended dislocation node measurements. Acta met. 13, 279 (1965).CrossRefGoogle Scholar
  33. Kelly, R., and E. Ruedl: An attempt to correlate diffusion and electr. micr. in krypton-bombarded Pt foils. Proc. 3. Europ. Reg. Conf. EM Prag, Vol. A, 185 (1964).Google Scholar
  34. Landuyt, J. Van, R. Gevers, and S. Amelinckx: Diffr. contr. from small voids as observed by electr. micr. Phys. stat. sol. 10, 3:9 (1965).Google Scholar
  35. Mannami, M.: Electr. micr. image of an edge dislocation perpendicular to the crystal surface. J. Phys. Soc. Japan 17, 1160 (1962).ADSCrossRefGoogle Scholar
  36. Meakin, J. D., and L. Cinquina: High resolution dark field micr. using a Philips 100 B electr. micr. Rev. sci. Instr. 36, 654 (1965).ADSCrossRefGoogle Scholar
  37. Mitsuishi, T., H. Nagasaki, and R. Uyeda: A new type of interference fringes observed in electr. micr. of cryst. substances. Proc. Imp. Acad. Japan 27, 86 (1951).Google Scholar
  38. Möllenstedt, G.: Elektr. mikr. Sichtbarmachung von Hohlstellen in EinkristallLamellen. Optik 10, 72 (1953).Google Scholar
  39. Nicholson, R. B., and J. Nutting: Direct obs. of the strain field produced by coherent precipitated particles in an age-hardened alloy. Phil. Mag. 3, 531 (1958).ADSGoogle Scholar
  40. Nicholson, R. B., G. Thomas, and J. Nutting: Electr. micr. studies of precipitation in Al alloys. J. Inst. Met. 87, 429 (1959).Google Scholar
  41. Ogawa, S., D. Watanabe, and F. E. Fujita: On the structure of evaporated thin films of metals. J. Phys. Soc. Japan 10, 429 (1955).ADSCrossRefGoogle Scholar
  42. Pashley, D. W., and A. E. B. Presland: Ion damage to metal films inside an electr. micr. Phil. Mag. 6, 1003 (1961).ADSCrossRefGoogle Scholar
  43. Poppa, H., u. O. Rang: Phasensprünge im elektr. mikr. Verdrehungsmoiré. Z. Metallkd. 51, 198 (1960).Google Scholar
  44. Rang, O.: Formbestimmung dünner Einkristall-L ellen mit Hilfe der durch Kristallgitter-Reflexe hervorgerufenen Scheinstrukturen. Optik 10, 90 (1953).Google Scholar
  45. Rang, O.: Zur Theorie der Moiré-Muster. IV. Intern. Kongr. EM Berlin, Bd. I, 371 (1958).Google Scholar
  46. Rang, O.: Zur geom. Theorie der Moiré-Muster auf Elektronenbildern übereinander liegender Einkrist. Z. Krist. 114, 98 (1960).CrossRefGoogle Scholar
  47. Rang, O., u. H. Schluge: Dunkelfeld-Mikr. mit definierten Gitterreflexen. Optik 9, 463 (1952).Google Scholar
  48. Reimer, L.: Elektr.opt. Unters. zur Zwillingsbildung in Ag-Aufdampfschichten. Optik 16, 30 (1959).Google Scholar
  49. Rühle, M., M. Wilkens u. U. Essmann: Zur Deutung der elektr. mikr. Kontrasterscheinungen an Fehlstellenagglom. in neutronenbestr. Kupfer. Phys. stat. sol. 11, 819 (1965).ADSCrossRefGoogle Scholar
  50. Seeger, A.: Theorie der Gitterfehlstellen, in Hdb. d. Physik VII/1, 383 (1955).Google Scholar
  51. Siems, R., P. Delavignette u. S. Amelinckx: Die direkte Mess. von Stapelfehlerenergien. Z. Physik 165, 502 (1961).ADSMATHCrossRefGoogle Scholar
  52. Siems, R., P. Delavignette u. S. Amelinckx: The buckling of a thin plate due to the presence of an edge dislocation. Phys. stat. sol. 2, 421 (1962).ADSCrossRefGoogle Scholar
  53. Silcox, J., and P. B. Hirsch: Direct obs. of defects in quenched gold. Phil. Mag. 4, 72 (1959a).ADSCrossRefGoogle Scholar
  54. Silcox, J., and P. B. Hirsch: Dislocation loops in neutron-irradiated copper. Phil. Mag. 4, 1356 (1959 b).ADSCrossRefGoogle Scholar
  55. Sjöstrand, F. S., and A. Polson: Macrocrystalline patterns of closely packed poliovirus particles in ultrathin sections. J. Ultrastruct. Res. 1, 365 (1958).CrossRefGoogle Scholar
  56. Thomas, G.: Transmission electr. micr. of metals. New York 1962.Google Scholar
  57. Whelan, M. J.: An outline of the theory of diffr. contr. observed at dislocations and other defects in thin crystals examined by transm. electr. micr. J. Inst. Met. 87, 392 (1959).Google Scholar
  58. Whelan, M. J.: Dislocation interactions in face-centred cubic metals, with particular reference to stainless steel. Proc. Roy. Soc. A 249, 114 (1959).ADSCrossRefGoogle Scholar
  59. Whelan, M. J., and P. B. Hirsch: Electr.diffr. from crystals containing stacking faults I + Phil. Mag. 2, 1121, 1303 (1957).Google Scholar
  60. Wilkens, M.: Zur Theorie des Kontrastes von elektr. mikr. abgebildeten Gitter-fehlern. Phys. stat. sol. 5, 175 (1964).ADSCrossRefGoogle Scholar
  61. Williamson, G. K.: Electr. micr. studies of dislocation structures in graphite. Proc. Roy. Soc. A 257, 457 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • Ludwig Reimer
    • 1
  1. 1.Universität Münster i. W.Deutschland

Personalised recommendations