Skip to main content

Computer Simulation

  • Chapter
  • 352 Accesses

Abstract

Simulation of multibody system motion needs to be done for various problems of system dynamics investigation, as described in Ch.1. In particular, it is useful for system analysis and optimization, for identification of system parameters and for verification of assumptions on the modeling. Important approaches to system design involve the addition of feedback control based on real time plant models. In such cases and in situations where simulation is used to evaluate a cost function to be minimized by optimization, the computer time required for simulation must be minimized. Though less important, time-efficient simulation is desirable in all other cases as well. But it is not the only requirement when developing a general-purpose multibody computer program. Others might be to minimize storage requirements (especially when implementing on a small computer), portability of code or the amount of time and labor needed to develop the computer code.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haug, E.J., “Elements and methods of computational dynamics”, Computer Aided Analysis and Optimization of Mechanical System Dynamics, E.J. Haug (ed.), Springer-Verlag, Berlin, 1984, pp.3–38.

    Google Scholar 

  2. Schwertassek, R., Roberson, R.E., “Computer-aided generation of multibody system equations”, Theory and Practice of Robots and Manipulators, Proc. RoManSy 84, A. Morecki, G. Bianchi, K. Kedzior (eds.), Kogan Page, London, 1985, pp.73–77.

    Google Scholar 

  3. Kortüm, W., Schiehlen, W., “General purpose vehicle system dynamics software based on multibody formalisms”, Vehicle System Dynamics 14 (1985), 229–263.

    Article  Google Scholar 

  4. Schiehlen, W.O., Kreuzer, E.J., “Symbolic computerized derivation of equations of motion”, Proc. IUTAM Symposium (Munich, 1977), K. Magnus (ed.), Springer-Verlag, Berlin, 1977, pp.290–305.

    Google Scholar 

  5. Nikravesh, P., “Application of animated graphics in large scale mechanical system dynamics”, Computer Aided Analysis and Optimization of Mechanical System Dynamics, E.J. Haug (ed.), Springer-Verlag, Berlin, 1984, pp.369–380.

    Google Scholar 

  6. Schuster, W., Wallrapp, O., “DV-Konzept eines interaktiven integrierten Programms zur Simulation mechanischer Systeme”, Proc. 1. Symposium Simulationstechnik, F. Breitenecker, W. Kleinert (eds.), Springer-Verlag, Berlin, 1982, pp.465–474.

    Google Scholar 

  7. Wallrapp, O., “MEDUSA Ein interaktives Analyse- und Auslegungsprogramm für Mehrkörpersysteme mit kleinen Relativbewegungen”, Proc. 2. Symposium Simulationstechnik, F. Breitenecker, W. Kleinert (eds.), Springer-Verlag, Berlin, 1984, pp.485–489.

    Google Scholar 

  8. Brandl, H., Johanni, R., Otter, M., “A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass-matrix”, IFAC/IFIP/-IMACS Int. Symposium on Theory of Robots (Wien, 1986), to appear.

    Google Scholar 

  9. Featherstone, R., “Robot dynamics algorithms”, Ph.D. dissertation, University of Edinburgh, 1984.

    Google Scholar 

  10. Featherstone, R., “The calculation of robot dynamics using articulated body inertias”. Int. J. Robotics Res. 2 (1983), pp.13–30.

    Article  Google Scholar 

  11. Lathrop, R.H., “Constrained (closed loop) simulation by local constraint propagation”, Proc. IEEE Int. Conf. Robotics and Automation (San Francisco, Apr 1986), pp.689–694.

    Google Scholar 

  12. Even, S., Graph Algorithms, Computer Science Press, Rockville MD, 1979.

    MATH  Google Scholar 

  13. Roberson, R.E., “The path matrix of a graph, its construction and its use in evaluating certain products”. Computer Methods Appl. Math. Engineering 42 (1984), 47–56.

    Article  MATH  Google Scholar 

  14. Roberson, R.E., “Comment on spanning trees in multibody dynamic simulation”, Computer Methods Appl. Math. Engineering 48 (1985), 237–238.

    Article  Google Scholar 

  15. Baumgarte, J., “Stabilization of constraints and integrals of motion in dynamical systems”, Computer Methods Appl. Math. Engineering 1 (1972), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  16. Baumgarte, J., “Stabilisierung von Bindungen im Lagrangeschen Formalismus”, ZAMM 58 (1978), T360–T361.

    MathSciNet  MATH  Google Scholar 

  17. Grünhagen, W.v., “Zur Stabilisierung der numerischen Integration von Bewegungsgleichungen”, Dissertation, TU Braunschweig, 1979. (Also as report DFVLR-FB79-41, DFVLR, Wissenschaftliches Berichtswesen, Köln, 1979.)

    MATH  Google Scholar 

  18. Petzold, L.R., “A description of DASSL: a differential/algebraic system solver”, Proc 10th IMACS World Congr. System Simulation and Scientific Computation (Montreal, Aug 1982).

    Google Scholar 

  19. Shampine, L.F., Gordon, M.K., Computer Solution of Ordinary Differential Equations. The Initial Value Problem, W.H. Freeman, San Francisco, 1975.

    MATH  Google Scholar 

  20. Gantmacher, F.R., Theory of Matrices, Chelsea, NY, 1959.

    MATH  Google Scholar 

  21. Orlandea, N., Chace, M.A., Calahan, J.A., “A sparsity-oriented approach to the dynamic analysis and design of mechanical systems, Parts 1 and 2”, J. Engrg. for Industry 99 (1977), 773–784.

    Article  Google Scholar 

  22. Orlandea, N., “Node-analogous, sparsity-oriented methods for simulation of mechanical dynamics systems”, Ph.D. dissertation, University of Michigan, Ann Arbor, 1973.

    Google Scholar 

  23. Orlandea, N., “ADAMS (Theory and Applications)”, Proc. 3rd Seminar on Advanced Vehicle System Dynamics (Amalfi, May 1986), pp.74–118.

    Google Scholar 

  24. Armstrong, W.W., “Recursive solution to the equations of motion of an N-link manipulator”, Proc. 5th World Congr. Theory of Machines and Mechanisms, ASME, 1979, pp.1343–1346.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roberson, R.E., Schwertassek, R. (1988). Computer Simulation. In: Dynamics of Multibody Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-86464-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-86464-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-86466-7

  • Online ISBN: 978-3-642-86464-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics