Allgemeine Physiologie der Zell- und Gewebsatmung

  • E. Opitz
  • D. Lübbers
Part of the Handbuch der Allgemeinen Pathologie book series (PATHOLOGIE, volume 4 / 2)

Zusammenfassung

Solange die Zelle lebt, leistet sie Arbeit in irgendeiner Form. Die hierzu notwendige Energie gewinnt sie aus dem Abbau von Nährstoffen. Vollzieht sich dieser Abbau unter Mitwirkung von molekularem Sauerstoff, so spricht man von aerobem Nährstoffabbau, biologischer Verbrennung oder Gewebsatmung. Geschieht der Nährstoffabbau in Abwesenheit von molekularem Sauerstoff, d. h. also unter anaeroben Bedingungen, so tritt entweder Glykolyse oder Gärung (Fermentation) an die Stelle von Atmung1 (s. S. 404).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agner, R.: Verdoperoxydase. Acta physiol. scand. (Stockh.) 2, Suppl. 8, 1–62 (1941).Google Scholar
  2. Agner, R.: Verdoperoxydase. Adv. Enzymol. 3, 137–148 (1943).Google Scholar
  3. Altschul, A. M., R. Abrams and T. R. Hooness: Cytochrom c peroxydase. J. of Biol. Chem. 136, 777 (1940).Google Scholar
  4. Amberson, W. R., T. Erdös, B. Chinn and H. Ludes: Electrophoretic and ultracentrifugal analyses of protein extracted from whole mammalian muscles. J. of Biol. Chem. 181, 405–413 (1949).Google Scholar
  5. Anderson, L., and G. W. E. Plaut: Table of oxidation-reduction potentials. In H. A. Lardy, Respiratory Enzymes, S. 71–84. Minneapolis: Burgess Publ. Comp. 1950.Google Scholar
  6. D’Ans, J., u. E. Lan: Taschenbuch für Chemiker und Physiker. Berlin-Göttingen: Springer 1949.Google Scholar
  7. Asmiissen, E., E. H. Christensen u. M. Nielsen: Die 02-Aufnahme der ruhenden und der arbeitenden Skelettmuskeln. Skand. Arch. Physiol. (Berl. u. Lpz.) 82, 212 (1939).Google Scholar
  8. Atwater, W. O.: Neue Versuche über Stoff-und Kraftwechsel im menschlichen Körper. Erg. Physiol. 3 (I), 497–622 (1904).Google Scholar
  9. Atwater, W. O., and F. G. Benedict: The metabolism of matter and energy in the human body. U.S. Dept. Agricult. Bull. 136 (1903).Google Scholar
  10. Baalen, J van, and S. Guam: Cofactor requirements for lipogenesis. J. of Biol. Chem. 205, 303–308 (1953).Google Scholar
  11. Bach, A.: Die langsame Verbrennung und die Oxydationsfermente. Fortschr. naturwiss. Forsch. 1, 85 (1910).Google Scholar
  12. Bach, A.: Oxydationsprozesse in der lebenden Substanz. In Handbuch der Biochemie, 1. Aufl., Erg.-Bd. 1913.Google Scholar
  13. Bach, L. M. N.: Conversion of red muscle to pale muscle. Proc. Soc. Exper. Biol. a. Med. 67, 268–269 (1948).Google Scholar
  14. Baddiley, J.: The structure of coenzyme A. Adv. Enzymol. 16, 1 (1955).Google Scholar
  15. Ball, E. G.: Über die Oxydation und Reduktion der drei Cytochrom-Komponenten. Biochem. Z. 295, 262 (1938).Google Scholar
  16. Ball, E. G.: Oxidative mechanisms in animal tissues. Symposion on respiratory enzymes, S. 21. Madison: Univ. Wisconsin Press 1941.Google Scholar
  17. Ball, E. G., and O. Meyerhof: On the occurence of iron-porphyrin compound and succinicdehydrogenase in marine organisms possessing the copper blood pigment hemocyanin. J. of Biol. Chem. 134, 483–493 (1940).Google Scholar
  18. Barbey, C., u. D. Lubbers: Siehe D. lubbers 1956.Google Scholar
  19. Barceoft, J.: Researches on prenatal life. Oxford 1946.Google Scholar
  20. Barker, S. B.: Mechanism of action of the thyroid hormone. Physiologic. Rev. 31, 205–248 (1951).Google Scholar
  21. Barron, E. S. G.: Mechanism of carbohydrate metabolism. An essay on comparative biochemistry. Adv. Enzymol. 3, 149–189 (1943).Google Scholar
  22. Bartelett, G. R., and E. S. G. Barron: The effect of fluoroacetate on enzymes and on tissue metabolism. Its use for the study of the oxidative pathway of pyruvate metabolism. J. of Biol. Chem. 170, 67–82 (1947).Google Scholar
  23. Bartels, H., u. G. Rodewald: Der arterielle Sauerstoffdruck, die alveolär-arterielle Sauerstoffdruckdifferenz und weitere atmungsphysiologische Daten gesunder Manner. Pflügers Arch. 256, 113–135 (1952).PubMedGoogle Scholar
  24. Basford, R. E., S. Mn and D. E. Green: Succinic dehydrogenase. Federat. Proc. 14, 178 (1955).Google Scholar
  25. Batelli, F., u. L. Stern: Die Oxydationsfermente. Erg. Physiol. 12, 96–268 (1912).Google Scholar
  26. Beinert, H.: Studies on the metabolism of administered cytochrome e by the aid of iron-labled cytochrome. Science (Lancaster, Pa.) 111, 469–470 (1950).PubMedGoogle Scholar
  27. Beinert, H.: The extent of artificial redistribution of cytochrome e in rat liver homogenates. J. of Biol. Chem. 190, 287–292 (1951).Google Scholar
  28. Beinert, H., P. Matthews and E. O. Richey: Studies on the incorporation of injected cytochrome c into tissue cells. II. Injection of radioactive cytochrome c into normal rats. J. of Biol. Chem. 186, 167–176 (1950).Google Scholar
  29. Beinert, H., and P. G. Stansly: Asymmetric labeling of aceto-acetate by enzymatic acetyl exchange with acetyl coenzyme A. J. of Biol. Chem. 204, 67–76 (1953).Google Scholar
  30. Belitzer, V.: La regulation de la respiration musculaire par les transformations du phosphagene. Enzymologia (Den Haag) 6, 1–8 (1939).Google Scholar
  31. Belitzer, V. A., u. T. Tsibakova: Sur le mécanisme des phosphorylations couplées avec la respiration. Biochimiya 4, 516 (1939).Google Scholar
  32. Benedict, F. G.: Vital energetics. A study in comparative basal metabolism. Carnegie Inst. Publ. 1938, 503.Google Scholar
  33. Benzinoer, T. H.: Equations to obtain for equilibrium reactions, free energy, heat and entropy changes from two calorimetric measurements. Proc. Nat. Acad. Sci. U.S.A. 42, 109 (1956).Google Scholar
  34. Benzinger, T. H., and R. Hems: Reversibility and equilibrium of the glutaminase reaction observed calorimetrically to find the free energy of adenosine triphosphate hydrolysis. Proc. Nat. Acad. Sci. U.S.A. 42, 896 (1956).Google Scholar
  35. Bertalanffy, L. v.: The theory of open systems in physics and biology. Science (Lancaster, Pa.) 111, 2872, 23–29 (1950).Google Scholar
  36. Bertalanffy, L. v.: Theoretische Biologie. Bd. II: Stoffwechsel und Wachstum. Bern 1951.Google Scholar
  37. Bertalanffy, L. v., and R. R. Estwick: Tissue respiration of musculature in relation to body size. Amer. J. Physiol. 173, 58 (1953).Google Scholar
  38. Bertalanffy, L. v.: Tissue respiration in experimental and congenital pituitary deficiency. Amer. J. Physiol. 177, 16 (1954).Google Scholar
  39. Bertalanffy, L. v., and J. Krywienczyk: The surface rule in crustaceans. Amer. Naturalist 87, 107 (1953).Google Scholar
  40. Bertalanffy, L. v., u. J. Muller: Untersuchungen über die Gesetzlichkeit des Wachstums. VIII. Die Abhängigkeit des Stoffwechsels von der Körpergröße und der Zusammenhang von Stoffwechseltypen und Wachstumstypen. Riv. Biol. 35, 48 (1943).Google Scholar
  41. Bertalanffy, L. v., and W. J. Pirozynski: Tissue respiration and body size. Science (Lancaster, Pa.) 113, 599 (1951).Google Scholar
  42. Bertalanffy, L. v.: Tissue respiration and body size. Science (Lancaster, Pa.) 114, 306 (1951).Google Scholar
  43. Bertalanffy, L. v.: Ontogenetic and evolutionary allometry. Evolution (Lancaster, Pa.) 6, 387 (1952).Google Scholar
  44. Bertalanffy, L. v.: Tissue respiration, growth and basal metabolism. Biol. Bull. 105, 240 (1953).Google Scholar
  45. Bessey, O. A., O. H. Lowry and R. H. Love: The fluorometric measurement of the nucleotides of riboflavin and their concentration in tissues. J. of Biol. Chem. 180, 755 (1949).Google Scholar
  46. Bethe, A.: Allgemeines und Vergleichendes. In BETHE-BERGMANNS Handbuch der normalen und pathologischen Physiologie, Bd. II/1. 1925.Google Scholar
  47. Bielschowski, M.: Morphologie der Ganglienzelle. In W. v. MÖLLENDORFS Handbuch der mikroskopischen Anatomie des Menschen, Bd. 4, Teil 1, S. 8–96. 1928.Google Scholar
  48. Brng, R. J., M. M. Hammond, J. C. Handelman, S. R. Power, F. C. Spencer, J. E. Eckenhoff, W. T. Goodale, J. H. Hafkenschiel and S. S. Kety: The measurement of coronary blood flow, oxygen conspumtion and efficiency of the left ventricle in man. Amer. Heart J. 38, 1 (1949).Google Scholar
  49. Biörck, G.: Myoglobin. Its properties and occurence in man. Acta cardiol. (Bruxelles) 3, 223 (1948).PubMedGoogle Scholar
  50. Biörck, G.: On myoglobin and its occurence in man. Acta med. stand. (Stockh.) Suppl. 226 (1949).Google Scholar
  51. Biörck, G.: Notes on the therapeutic usefulness of respiratory catalysts, particulary cytochrome c, in hypoxie conditions. Cardiologica 18, 11 (1951).Google Scholar
  52. Blalock, A., and M. F. Mason: Observations on the blood flow and gaseous metabolism of the liver of unesthetized dogs. Amer. J. Physiol. 117, 328 (1936).Google Scholar
  53. Blank, H. Tiergröße und Stoffwechsel. Pflügers Arch. 234, 310 (1934).Google Scholar
  54. Bloom, B., and D. W. Stetten jr.: The fraction of glucose catabolized via the glycolytic pathway. J. of Biol. Chem. 212, 555 (1955).Google Scholar
  55. Bloom, B., M. R. Stetten and D. Stetten jr.: Evaluation of catabolic pathways of glucose in mammalian systems. J. of Biol. Chem. 204, 681 (1953).Google Scholar
  56. Bodländer, G.: Über langsame Verbrennung. Slg. chem. u. chem.-techn. Vortr. 3, H. 11 u. 12 (1899).Google Scholar
  57. Bono, G.: Crystalline cytochrom c from the king penguin. Nature (Lond.) 176, 829 (1955).Google Scholar
  58. Borger, G., u. H. Groll: Die individuellen Schwankungen der Sauerstoffatmung des überlebenden und entzündeten Gewebes. Krkh. forsch. 3, 443 (1926).Google Scholar
  59. Bowen, W. J.: Notes on myoglobin preparation and iron content. J. of Biol. Chem. 176, 747–751 (1948).Google Scholar
  60. Bowen, W. J.: The absorption spectra and extinction coefficients of myoglobin. J. of Biol. Chem. 179, 235 (1949).Google Scholar
  61. Bowen, W. J., and H. J. Eads: Effect of 1800 feet stimulated altitude on the myoglobin content of dogs. Amer. J. Physiol. 159, 77–82 (1948).Google Scholar
  62. Boyer, P. D., A. B. Falcone and W. H. Harrison: Reserval and mechanism of oxidative phosphorylation. Nature (Lond.) 174, 401 (1954).Google Scholar
  63. Breckenridge, B.: Carbon monoxide oxidation by cytochrom oxidase in muscle. Amer. J. Physiol. 173, 61 (1953).PubMedGoogle Scholar
  64. Breusch,F.L.: Citric acid cycle; sugar and fat breakdown in tissue metabolism. Science (Lancaster, Pa.) 97, 490 (1943).PubMedGoogle Scholar
  65. Breusch,F.L.: The biochemistry of fatty acid catabolism. Adv. Enzymol. 8, 343 (1943).Google Scholar
  66. Breusch,F.L.: Stoffwechsel der Kohlenhydrate. In B. Flaschenträger u E Lehnartz, Physiologische Chemie, Bd. IT a, S. 724. 1954.Google Scholar
  67. Brink, F., D. W. Bronx, C. M. Conelly, F. D. Carlson and P. W. Davies: The time course of recovery oxygen consumption in nerve. Federat. Proc. 6, 18 (1947).Google Scholar
  68. Brock, B., H. Druckrey u. H. Herken: Der Stoffwechsel des geschädigten Gewebes. Arch. expel. Path. u. Pharmakol. 188, 436 (1938).Google Scholar
  69. Brody, S.: Bioenergetics and growth. New York 1945.Google Scholar
  70. Bronn, D. W., M. G. Larabee and P. W. Dvies: The rate of oxygen consumption in localized regions of the nervous system: in presynaptic endings and in cell bodies. Federat. Proc. 5, 11 (1945).Google Scholar
  71. Bücher, Th.: Über ein phosphatübertragendes Gärungsferment. Biochim. et Biophysica Acta 1, 292 (1947).Google Scholar
  72. Bücher, Th.: System des Energietransportes in der lebendigen Substanz. Angew. Chem. 62, 256 (1950).Google Scholar
  73. Bücher, Th.: Probleme des Energietransportes innerhalb lebender Zellen. Adv. Enzymol. 14, 1 (1953).Google Scholar
  74. Burk, D.: The free energy of glykogen-lactic acid breakdown in muscle. Proc. Roy. Soc. Lond., Ser. B 104, 153 (1929).Google Scholar
  75. Burk, D.: The Pasteur Effect. Cold Spring Harbor Symp. Quant. Biol. 7, 420 (1939).Google Scholar
  76. Burton, K., and H. A. Krebs: The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenòsintriphosphate. Biochemic. J. 54, 94 (1953).Google Scholar
  77. Calvin, M.: The photosynthetic carbon cycle. Proc. 3. Internat. Congr. Biochem. 1955, S. 211–225. 1956.Google Scholar
  78. Campbell, A. C. P.: Variation in vascularity and oxidase content in different regions of the brain of the cat. Arch. of Neur. 41, 223–242 (1939).Google Scholar
  79. Carlsson, A., u. G. Hollung Er: Effect of Vitamin Don the citric acid metabolism. Acta physiol. stand. (Stokh.) 31, 317 (1954).Google Scholar
  80. Carruthers, Ch.: Polarographic determination of cytochrome c. J. of Biol. Chem. 171, 641–651(1947).Google Scholar
  81. Carruthers, Ch., and V. Suntzeff: The distribution of pyridine nucleotides in cellular fractions of some normal and malignant tissues. Cancer Res. 14, 29–33 (1954).PubMedGoogle Scholar
  82. Castor, L. N., and B. Chance: Photochemical action spectra of carbon monoxide-inhibited respiration. J. of Biol. Chem. 217, 453 (1955).Google Scholar
  83. Chance, B.: The reaction of ferro-cytochrome c with peroxidases and peroxides. In J. T. Edsall, Enzymes and Enzyme-Systems, S. 95–104. Cambridge, Mass.: Harvard University Press 1951.Google Scholar
  84. Chance, B.: Dynamics of respiratory pigments of ascites tumor cells. Ann. New York Acad. Sci. 16, 74 (1953).Google Scholar
  85. Chance, B.: Enzyme mechanisms in living cells. In: The mechanisms of enzyme action, S. 399–460. Baltimore 1954.Google Scholar
  86. Chance, B.: Spectrophotometry of intracellular respiratory pigments. Science (Lancaster, Pa.) 120, 767–775 (1954).PubMedGoogle Scholar
  87. Chance, B.: On possible mechanisms for the control of electron transport in the respiratory chain. Proc. 3. Internat. Congr. of Biochem. Brüssel 1955. New York: Academic Press 1956.Google Scholar
  88. Chance, B., and B. Hess: On the control of metabolism in ascites tumor cell suspensions. Ann. New York Acad. Sci. 63, 1008 (1956).Google Scholar
  89. Chance, B., L. Smith and L. N. Castor: A new method for the study of the carbon monoxide compounds of respiratory enzymes. Biochim. et Biophysica Acta 12, 289 (1953).Google Scholar
  90. Chance, B., and G. R. Williams: A simple and rapid assay of oxidative phosphorylation. Nature (Lond.) 175, 1120–1121 (1955).Google Scholar
  91. Chance, B.: A method for the localization of sites for oxidative phosphorylation. Nature (Lond.) 176, 250–254 (1955).Google Scholar
  92. Chance, B.: Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. of Biol. Chem. 217, 383 (1955).Google Scholar
  93. Chance, B.: II. Difference spectra. J. of Biol. Chem. 217, 395 (1955).Google Scholar
  94. Chance, B.: III. The steady state. J. of Biol. Chem. 217, 409 (1955).Google Scholar
  95. Chance, B.: IV. Respiratory chain. J. of Biol. Chem. 217, 429 (1955).Google Scholar
  96. Chance, B.: VI. The effects of adenosine diphosphate on azide-treated mitochondria. J. of Biol. Chem. 221, 477 (1956).Google Scholar
  97. Chance, B.: The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17, 65 (1956).Google Scholar
  98. Chance, B., G. R. Williams, W. F. Holmes and J. Higgins: Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J. of Biol. chem. 217, 439 (1955).Google Scholar
  99. Chappell, J. B., and S. V. Perry: The respiratory and adenosinetriphosphatase activities of skeletal muscle mitochondria. Biochemic. J. 55, 586–595 (1953).Google Scholar
  100. Christensen, W. R., C. H. Plimpton and E. G. Ball: The hexokinase of the rat erythrocyte and the influence of hormonal and other factors on its activity. J. of Biol. Chem. 180, 791–802 (1949).Google Scholar
  101. Clark, J. K., and H. G. Barker: Effect of work on renal oxygen utilization. Federat. Proc. 8, 26 (1949).Google Scholar
  102. Clark jr, R. T.: Evidence for conversion of carbon monoxide to carbon dioxide by the intact animal. Amer. J. Physiol. 162, 560–564 (1950).PubMedGoogle Scholar
  103. Clark jr, R. T., D. Criscuolo and C. K. Coulson: Effects of simulated altitude on myoglobin content of animals with and without exercise. Federat. Proc. 11, 25 (1952).Google Scholar
  104. Clark, R. T., J. N. Stannard and W. O. Fenn: Evidence for the conversion of carbon monoxide to carbon dioxide by the intact animal. Science (Lancaster, Pa.) 109, 615–616 (1949).PubMedGoogle Scholar
  105. Clifton, C. E.: Microbial assimilations. Adv. Enzymol. 6, 269–308 (1946).Google Scholar
  106. Clowes, G. H. A., and M. E. Krahl: Studies on cell division. I. On the relation between molecular structures, chemical properties and biological activition of the nitrophenols. J. Gen. Physiol. 20, 145–171 (1936).PubMedGoogle Scholar
  107. Coan, M., and G. T. Cori: On the mechanism of action of muscle and potatophosphorylase. J. of Biol. Chem. 175, 89 (1948).Google Scholar
  108. Colowick, S. P., G. T. Cori and M. W. Slein: The role of myokinase in transphosphorilations. I. J. of Biol. Chem. 148, 117 (1943).Google Scholar
  109. Colowick, S. P.: The effect of adrenal cortex and anterior pituitary extracts and insulin on the hexokinase reaction. J. of Biol. Chem. 168, 583–596 (1947).Google Scholar
  110. Colowick, S. P., and H. M. Kalckar: The role of myokinase in transphosphorylations. I. The enzymatic phosphorylation of hexoses by adenyl pyrophosphate. J. of Biol. Chem. 148, 117 (1943).Google Scholar
  111. Colowicn, S. P., H. M. Kalckar and C. F. Cori: Glucose phosphorylation and oxidation in cell-free tissue extracts. J. of Biol. Chem. 137, 343–356 (1941).Google Scholar
  112. Colowicn, S. P., and N. O. Kaplan: Methods in enzymology, Bd. II/V, S. 681ff. New York: Academic Press 1955.Google Scholar
  113. Colowick, S. P., and E. W. Sutherland: Polysaccharide synthesis from glucose by means of purified enzymes. J. of Biol. Chem. 144, 423 (1942).Google Scholar
  114. Colowick, S. P., M. S. Welch and C.F. Cori: Phosphorylation of glucose in kidney extract. J. of Biol. Chem. 133, 359 (1940).Google Scholar
  115. Copenhaver jr., J. H., and H. A. Lardy: Oxidative phosphorylations: Pathways and yield in mitochondrial preparations. J. of Biol. Chem. 195, 225 (1952).Google Scholar
  116. Cori, G. T.: Phosphorylation of carbohydrates. Symposium on respiratory Enzymes, S. 175–189. Madison, Wisconsin: University of Wisconsin Press 1941.Google Scholar
  117. Cori, G. T., S. P. Colowick and C. F. Cori: The action of nucleotides in the disruptive phosphorilation of glykogen. J. of Biol. Chem. 123, 381 (1938).Google Scholar
  118. Craig, Fr. N., and H. K. Beecher: The effect of low oxygen tension on tissue metabolism (retina). J. Gen. Physiol. 26, 467–472 (1942/43).Google Scholar
  119. Crane, F., and H. Beinert: A link between fatty acyl CoA dehydrogenase and cytochrome c: A new flavin enzyme. J. Amer. Chem. Soc. 76, 4491 (1954).Google Scholar
  120. Crane, R. K., and A. Sors: The association of hexokinase with particulate fractions of brain and other tissue homogenates. J. of Biol. Chem. 203, 273–292 (1953).Google Scholar
  121. Cross, R. J., and J. V. Taggart: Renal tubular transport: Accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190 (1950).PubMedGoogle Scholar
  122. Dannenberg, H., u. M. Kiese: Untersuchungen über Cytochrome. I. Die prosthetische Gruppe des sauerstoffübertragenden Ferments. (Cytochromoxydase.) Biochem. Z. 322, 395–413 (1952).PubMedGoogle Scholar
  123. Day, J. N. E., and J. P. Sheel: Oxygen isotopic exchange in animal respiration. Nature (Lond.) 142, 917 (1938).Google Scholar
  124. Denbigh, K. G.: The thermodynamics of the steady state. Methuen’s Monographs on chemical subjects. London: Methuen & Co. 1951.Google Scholar
  125. Dickens, F.: Die manometrische Methode. In E. Bamann u. K. Myrback, Die Methoden der Fermentforschung, S. 985–1022. Leipzig: Georg Thieme 1941.Google Scholar
  126. Dickens, F.: The citric acid content of animal tissues, with reference to its occurence in bone and tumor. Biochemic. J. 35, 1011 (1941).Google Scholar
  127. Dickens, F.: Anaerobic glycolysis, respiration and the PASTEUR-Effect. In J. B. Summer u K. Myrback, The enzymes, Bd. II/1, S. 624–683. New York: Academic Press 1951.Google Scholar
  128. Dickens, F.: The Hexosemonophosphate oxidative pathway of yeast and animal tissues. Proc. 3. Internat. Congr. Biochem. 1955, S. 170–182. 1956.Google Scholar
  129. Dickens, F., and G. E. Glock: Direct oxydationof glucose-6-phosphate, 6-phosphogluconate and pentose-5-phosphates by enzymes of animal origin. Biochemie. J. 50, 81–95 (1951).Google Scholar
  130. Dickman, S. R., and J. F. Speyer: Factors affecting the activity of mitochondrial and soluble aconitase. J. of Biol. Chem. 206, 67–75 (1954).Google Scholar
  131. Doerr, W.: Über die Anwendung des Reduktionsindikators Triphenyltetrazoliumchlorid (TTC) in Histologie und Histophysiologie. Frankf. Z. Path. 61, 557–573 (1950).Google Scholar
  132. Donaldson, H. H.: The rat. Memoirs of Witstar Institute Nr 6, 2. Aufl. Philadelphia 1924.Google Scholar
  133. Dorfman, A.: Pathways of glycolysis. Physiologic. Rev. 23, 124 (1943).Google Scholar
  134. Doty, R. W., and R. W. Gerard: Nerve conduction without increased oxygen consumption: action of azide and fluoroacetate. Amer. J. Physiol. 162, 458 (1950).PubMedGoogle Scholar
  135. Drabkin, D. L.: Aspects of oxygenation and oxidation functions. In F. J. W. Rougthon u. J. C. Kendrew, Haemoglobin, S. 35–52. London u. New York 1949.Google Scholar
  136. Drabkin, D. L.: The distribution of the chromproteins, Hemoglobin, Myoglobin and cytochrom c, in the tissues of different species and the relationship of the total content of each chromoprotein to body mass. J. of Biol. Chem. 182, 317–333 (1950).Google Scholar
  137. Drabkin, D. L.: Metabolism of hemin chromoproteins. Physiologic. Rev. 31, 345–431 (1951).Google Scholar
  138. Druckrey, H.: Der Stoffwechsel des geschädigten Gewebes. Arch. exper. Path. u. Pharmakol. 180, 231 (1936).Google Scholar
  139. Dubois, K. P., and V. R. Potter: Biocatalyst in cancer tissue. I. Cytochrom c. Cancer Res. 2, 290 (1942).Google Scholar
  140. Dunning, H. S., and H. G. Wolff: The relative vascularity of various part of the central and peripheral nervous system of the cat and its relation to function. J. Comp. Neur. 67, 433 (1937).Google Scholar
  141. Duve, Chr. de: A spectrophotometric method for the simultaneous determination of myoglobin and hemoglobin in extracts of human muscle. Acta them. stand. (Copenh.) 2, 264–289 (1948).Google Scholar
  142. Edelbacher, S., u. F. Leuthabdt: Lehrbuch der physiologischen Chemie, 11. Aufl. Berlin: W. de Gruyter & Co. 1954.Google Scholar
  143. Eggert, J.: Lehrbuch der Physikalischen Chemie. Leipzig: Hirzel 1937.Google Scholar
  144. Ehrlich, P.: Das Sauerstoffbedürfnis, des Organismus. Berlin 1885.Google Scholar
  145. Eichelberger, L., E. S. Fechter, E. M. K. Gening and B. J. Vos: Muscle and blood hemoglobins in the delphin. Science (Lancaster, Pa.) 90, 443 (1939).PubMedGoogle Scholar
  146. Elliott, K. A. C.: Handbuch der Katalyse, Bd. III. Wien: Springer 1941.Google Scholar
  147. Elliott, K. A. C.: Metabolism of brain tissue slices and suspensions from various mammals. J. of Neurophysiol. 11, 473–484 (1948).Google Scholar
  148. Elliott, K. A. C., and M. Henry: Studies on the metabolism of brain suspensions. III. Respiration at low oxygen tension. J. of Biol. Chem. 163, 351 (1946).Google Scholar
  149. Embden, G., u. H. J. Deuticke: Über die Bedeutung der Phosphoglycerinsäure für die Glykolyse in der Muskulatur. Hoppe Seylers Z. 230, 29 (1934).Google Scholar
  150. Ender, F.: Wasserstoffionenkonzentration. In Hoppe-Seyler/ Thierfelder, 10. Aufl., Bd. 1, S. 527–616. Berlin-Heidelberg-Göttingen: Springer 1953.Google Scholar
  151. Ender, F.: Redoxpotentiale. In Hoppe-Seyler/Trierfelder, 10. Aufl., Bd. 1, S. 628–713. BerlinHeidelberg-Göttingen: Springer 1953.Google Scholar
  152. Engelhardt, W. A.: Die Beziehungen zwischen Atmung und Pyrophosphatumsatz in Vogelerythrocyten. Biochem. Z. 251, 343–368 (1932).Google Scholar
  153. Engelhardt, W. A., u. A. Braunstein: Über die Beziehungen zwischen der Phosphorsäure und der Glykolyse im Blut. Biochem. Z. 201, 48 (1928).Google Scholar
  154. Engelhardt, W. A., u. M. Ljurimova: Glykolyse und Phosphorsäureumsatz in den Blutzellen verschiedener Tiere. Biochem. Z. 227, 6–15 (1930).Google Scholar
  155. Engler, C., u. J. Weissberg: Kritische Studien über die Vorgänge der Antoxydation. Braunschweig 1904.Google Scholar
  156. Estabrook, R. W.: Cytochromes in disrupted mitochondria. Federat. Proc. 14, 15 (1955).Google Scholar
  157. Rucken, A.: Lehrbuch der chemischen Physik. Leipzig 1941–1944.Google Scholar
  158. Euler, H. v., u. K. Hasse: Diaphorase im Tierkörper. Naturwiss. 26, 187 (1938).Google Scholar
  159. Euler, H. v., u. H. Hellström: Fluoreszenz-mikroskopische Studien über das Flavin in Augen. Z. vergl. Physiol. 21, 739 (1935).Google Scholar
  160. Euler, U. S. v.: Action stimulante du dinitro-a-naphtol, du bleu méthylène et des substances apperentées sur les échanges respiratoires in vivo et in vitro. Arch. internat. Pharmacodynamie 43, 67–85 (1932).Google Scholar
  161. Feinen, F. J.: Die Wirkung von Cytochrom c bei der Narkose und verschiedenen Sauerstoffmangelzuständen. Dtsch. med. Wschr. 1955, 146–148.Google Scholar
  162. Fenn, W. O., and D. M. Cobb: The stimulation of muscle respiration by carbon monoxide. Amer. J. Physiol. 102, 379–392 (1932).Google Scholar
  163. Fenn, W. O.: The burning of carbon monoxide by heart and skeletal muscle. Amer. J. Physiol. 102, 393–401 (1932).Google Scholar
  164. Fick, A.: Mechanische Arbeit und Wärmeentwicklung bei der Muskeltätigkeit. Leipzig: Brockhaus 1882.Google Scholar
  165. Field, J. H., H. S. Belding and A. W. Martin: An analysis of the relation between basai metabolism and summated tissue respiration in the rat. I. The post-pubertal albino rat. J. Cellul. a. Comp. Physiol. 14, 143–157 (1939).Google Scholar
  166. Fischer, H., P. Huber u. H. Langemann: Die Atmung von Herzmuskelsphnitten unter dem Einfluß herzaktiver Glykoside, nebst kritischen Bemerkungen zur Verwendung von Gewebsschnitten in der WARBURG-Apparatur. Helvet. physiol. Acta 9, 416–437 (1951).Google Scholar
  167. Franke, W.: Berechnung der freien Energie biochemisch wichtiger Reaktionen. In E. Bamann u. K. Myrbäck, Die Methoden der Fermentforschung, Bd. 1, S. 847–868. Leipzig: Georg Thieme 1941.Google Scholar
  168. Franke, W.: H. Wielands Arbeiten zum Mechanismus der biologischen Oxydation. Naturwiss. 30, 342 (1942).Google Scholar
  169. Friedkin, M., and A. L. Lehninger: Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen. I. J. of Biol. Chem. 178, 611–623 (1949).Google Scholar
  170. Frohman, C. E., J. M. Orten and A. H. Smith: Levels of acids of the citric acid cycle in tissues of normal and diabetic rats. J. of Biol. Chem. 193, 803–807 (1951).Google Scholar
  171. Fusser, H., u. F. Krüger: Vergleichende Versuche zur Atmungsphysiologie von Planorbis corneus und Limnaea stagnalis (Gastropoda Pulmonata). Z. vergl. Physiol. 33, 14–52 (1951).Google Scholar
  172. Fulmer, E. J.: The thermodynamics of cell reactions. Erg. Enzymforsch. 1, 1–20 (1932).Google Scholar
  173. Gammeltoft, A.: The significance of ketone bodies in fat metabolism. I. Acta physiol. stand. (Stockh.) 19, 270–287 (1949).Google Scholar
  174. Glass, F., H. Maxwell and E. L. Gibbs: Volume flow of blood through the human brain. Arch. of Neur. 57, 137 (1947).Google Scholar
  175. Gillespie, R. J., G. A. Maw and C. A. Vernon: The concept of phosphate bond-energy. Nature (Lond.) 171, 1147–1149 (1953).Google Scholar
  176. Glenn, J. L., and F. L. Crane: Electron transferring particle. Federat. Proc. 15, 262 (1956).Google Scholar
  177. Glock, G. E., and P. Mclean: Glucose-6-phosphate dehydrogenase activity of rat liver. Nature (Loud.) 170, 119 (1952).Google Scholar
  178. Glock, G. E.: Further studies on the properties and assay of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase of rat liver. Biochemic. J. 55, 400–408 (1953).Google Scholar
  179. Glock, G. E.: Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours. Biochemic. J. 56, 171–175 (1954).Google Scholar
  180. Goddard, D. R.: Cytochrom c and cytochromoxydase from wheat germ. Amer. J. Bot. 31, 270 (1944).Google Scholar
  181. Goodale, W. T., M. Lubin, J. E. Eckenhoff, J. H. Hafkenschiel and W. G. Banfield: Coronary sinus catheterization for studying coronary blood flow and myocardial metabolism. Amer. J. Physiol. 152, 340–355 (1948).PubMedGoogle Scholar
  182. Gräff, S.: Die Naphtholblau-Oxydase-Reaktion der Gewebszellen nach Untersuchungen am unfixierten Präparat. Frankf. Z. Path. 11, 358–384 (1912).Google Scholar
  183. Gräff, S.: Die physiologisch-chemischen Grundlagen des „Mi-Effektes“ der Nadi-Reaktion (Indophenolblausynthese). Beitr. path. Anat. 70, 1 (1922).Google Scholar
  184. Graf, W.: Quantitativ-histologische Analyse von roter und weißer Muskulatur beim Kaninchen. Anat. Anz. 95, 107–118 (1944).Google Scholar
  185. Grafe, E.: Probleme der Gewebsatmung. Dtsch. med. Wschr. 1925, 640–642.Google Scholar
  186. Grafe, E., H. Reinwein u. K. Singer: Studien über Gewebsatmung. II. Die Atmung der überlebenden Warmblüterorgane. Biochem. Z. 165, 102–117 (1925).Google Scholar
  187. Grassmann, P.: Ausgleichsvorgänge. Einiges aus der modernen Theorie der irreversiblen Prozesse. Physik. Bl. 11, 65–72 (1955).Google Scholar
  188. Green, D. E.: The citric acid cycle and the cyclophorase system. In H. A. Lardy, Respiratory Enzyms, S. 201–225. Minneapolis, Minn.: Burgess Publ. Comp. 1950.Google Scholar
  189. Green, D. E.: Organized enzyme systems. J. Cellul. a. Comp. Physiol. 39, Suppl. 2, 75–111 (1952).Google Scholar
  190. Green, D. E.: The cyclophorase-mitochondrial system. Symposion sur le cycle tricarboxylique, Paris 1952, S. 5–27.Google Scholar
  191. Green, D. E.: The structure of the electron transport system of mitochondria. Proc. 3. Internat. Congr. Biochem. 1955, S. 281–284. New York: Academic Press 1956.Google Scholar
  192. Green, D. E., and H. Beinert: Oxidative phosphorylation in a nonmitrochondrial system of pig heart. In W. D. Mcelroy u. B. Glass, Phosphorus metabolism, Bd. 1, S. 330–343. Baltimore 1951.Google Scholar
  193. Green, D. E., H. Beinert, M. Fuld, D. Goldman, M. H. Paul and N. K. Sarkar: Studies on the cyclophorase system. XXVII. Cyclophorase activity in a nonmitochondrial system of pigheart muscle. Exper. Cell Res. 4, 222–235 (1953).Google Scholar
  194. Green, D. E., J. G. Dewan and L. F. Leloir: The ß-hydroxybutric dehydrogenase of animal tissues. Biochemie. J. 81, 934 (1937).Google Scholar
  195. Green, D. E., W. F. Loomis and V. H. Auerbach: Studies on the cyclophosphorase system. I. The complete oxidation of pyruvic acid to carbon dioxide and water. J. of Biol. Chem. 172, 389–403 (1948).Google Scholar
  196. Green, D. E., S. Mu and P. M. Kohout: Studies on the terminal electron transport system. I. Succinic dehydrogenase. J. of Biol. Chem. 217, 551–567 (1955).Google Scholar
  197. Greenstein, J. P.: Progress in tumor enzymology. Adv. Enzymol. 3, 315–348 (1943).Google Scholar
  198. Gregory, P. W., and H. Goss: Glutathione concentration and hereditary body size. J. of Exper. Zool. 66, 155–173 (1933).Google Scholar
  199. Groot, S. R. de: Thermodynamics of irreversible prozesses. Amsterdam 1951.Google Scholar
  200. Günther, H.: Über den Muskelfarbstoff. Virchows Arch. 230, 146–178 (1921).Google Scholar
  201. Günther, H.: Die kryptogenen Myopathien. Erg. inn. Med. 58, 331–391 (1940).Google Scholar
  202. Gunsalus, J. G.: Group transfer and acyl-generating functions of lipoic acid derivatives. In D. Mcelroy u. B. Glass, A symposium on the mechanism of enzym action, S. 545 - -580. Baltimore: John Hopkins Press 1954.Google Scholar
  203. Gutfreund, H.: The nature of entropy and its role in biochemical processes. Adv. Enzymol. 11, 1–33 (1951).Google Scholar
  204. Haas, E.: Cytochrome oxidase. J. of Biol. Chem. 148, 481 (1943);Google Scholar
  205. Haas, E.: Cytochrome oxidase. J. of Biol. Chem. 152, 695 (1944).Google Scholar
  206. Haas, E., B. L. Horecker and T. R. Hogness: The enzymatic reduction of cytochrome Cytochrome c reductase. J. of Biol. Chem. 136, 747 (1940).Google Scholar
  207. Haase, R.: Der zweite Hauptsatz in der Biologie. Z. Elektrochem. 55, 566–568 (1951).Google Scholar
  208. Haberland, H. F. O.: Die operative Technik des Tierexperimentes mit anatomischen und topographischen Bemerkungen. In Abderhaldens Handbuch der biologischen Arbeitsmethoden, Abt. V, 3 C, 1. 1934.Google Scholar
  209. Hagihara, B., T. Horio, M. Nozaki, I. Sekuzu, J. Yamashita and K. Okunuki: Comparison of properties of cristalline cytochrom c from yeast, beef heart and pig heart. Nature (Lond.) 178, 631 (1956).Google Scholar
  210. Hagmara, B., T. Horio, J. Yamishata, M. Nozaki and K. Okunuki: Cristalline cytochrom c. Preparation of cristalline cytochrom c from yeast. Nature (Lond.) 178, 629 (1956).Google Scholar
  211. Hagihara, B., I. Morikawa, I. Sekuzu, T. Horio and K. Okunuki: Preparation of cristalline cytochrom from beef and pig heart. Nature (Lond.) 178, 630 (1956).Google Scholar
  212. Haldane, J., and J. L. Smrrh: The oxygen tension of arterial blood. J. of Physiol. 20, 497 (1896).Google Scholar
  213. Hallmann, N.: Untersuchungen über die Bildung und den Abbau der Zitronensäure im tierischen Gewebe. Acta physiol. stand. (Stockh.) 2, Suppl. 4, 1–136 (1940).Google Scholar
  214. Hamoir, G.: Myoglobin from carp muscle. Nature (Lond.) 171, 345–346 (1953).Google Scholar
  215. Harman, J W Studies on mitochondria: I. The association of cyclophorase with mitochondria. Exper. Cell Res. 1, 382–393 (1950).Google Scholar
  216. Hawkins, J. A.: The metabolism of liver tissue from rats of different ages. J. Gen. Physiol. 11, 645–647 (1928).PubMedGoogle Scholar
  217. Heymans, C., et J. J. Bouckaert: Action hyperthermisante et cardiovasculaire du dinitro-a-naphthol chez le chien. Arch. internat. Pharmacodynamie 35, 63–69 (1928).Google Scholar
  218. Higgins, H., J. A. Miller, J. M. Price and F. M. Strong: Levels and intracellular distribution of coenzyme A and pantothenic acid in rat liver and tumors. Proc. Soc. Exper. Biol. a. Med. 75, 462–465 (1950).Google Scholar
  219. Hill, A. V.: The diffusion of oxygen and lactic acid through tissues. Proc. Roy. Soc. Lond., Ser. B 104, 39–96 (1928).Google Scholar
  220. Hill, R.: Oxygen affinity of muscle haemoglobin. Nature (Lond.) 1933, 897–898.Google Scholar
  221. Hill, R.: Oxygen dissociation curves of muscle haemoglobin. Proc. Roy. Soc. Lond., Ser. B 120, 472–483 (1936).Google Scholar
  222. Hitchcock, D. J.: Ausgewählte Prinzipien der physikalischen Chemie. In R. Höber, Physikalische Chemie der Zellen und Gewebe, S. 1–100. Bern: Stämpfli & Co. 1947.Google Scholar
  223. Höber, R.: Physikalische Chemie der Zelle und der Gewebe. Leipzig: Wilhelm Engelmann 1926.Google Scholar
  224. Höber, R.: Physikalische Chemie der Zellen und Gewebe. Deutsche V bersetzung vin Wilbrandt u. Stämpfli. Bern 1947.Google Scholar
  225. Hooefer, F.: Histoire de la Chimie, Bd. II, S. 98. Paris 1843.Google Scholar
  226. Hogeboom, G. H., A. Claude and R. D. Hotchkiss: The distribution of cytochrome oxydase and succinoxidase in the cytoplasm of the mammalian liver cell. J. of Biol. Chem. 165, 615–629 (1946).Google Scholar
  227. Hogeboom, G. H., and W. C. Schneider: Cytochemical studies of mammalian tissues. III. Isocitric dehydrogenase and triphosphopyridine nucleotide-cytochrome c reductase of mouse liver. J. of Biol. Chem. 186, 417–427 (1950).Google Scholar
  228. Hogeboom, G. H.: Intracellular distribution of enzyms. VIII. The distribution of diphosphopyridine nucleotide-cytochrome c reductase in normal mouse liver and mouse hepatoma. J. Nat. Canc. Inst. 10, 983–987 (1950).Google Scholar
  229. Hogeboom, G. H.: Cytochemical studies. IV. Physical state of certain respiratory enzyms of mitochondria. J. of Biol. Chem. 194, 513–519 (1952).Google Scholar
  230. Hogeboom, G. H., W. C. Schneider and G. E. Palade: Cytochemical studies of mammalian tissues. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J. of Biol. Chem. 172, 619–636 (1948).Google Scholar
  231. Hogeboom, G. H., W. C. Schneider and M. J. Striebich: Cytochemical studies. V. On the isolation and biochemical properties of liver cell nuclei. J. of Biol. Chem. 196, 111–120 (1952).Google Scholar
  232. Hollunger, G.: Guanidin and oxidative phosphorylations. Acta pharmacol. (Kobenh.) 11, Suppl. 1 (1955).Google Scholar
  233. Holzer, H.: Acetyl-Coenzym A und andere S-AcylVerbindungen bei der Energieausnützung in der lebenden Zelle. Angew. Chem. 64, 248–253 (1952).Google Scholar
  234. Honcke, P.: Investigations on the structure and function of living, isolated cross-striated muscle fibres of mammals. Thesis, Aarhus,Denmark 1947. Nach Paul-Enzyms II, S. 388.Google Scholar
  235. Horecker, B. L.: Triphosphopyridine nucleotide-cytochrome c reductase in liver. J. of Biol. Chem. 183, 593 (1950).Google Scholar
  236. Horecker, B. L., and A. Kornberg: The cytochrome c cyanide complex. J. of Biol. Chem. 165, 11–20 (1946).Google Scholar
  237. Horecker, B. L., and P. Z. Smyrniotis: The fixation of carbon dioxide in 6-phosphogluconic acid. J. of Biol. Chem. 196, 135 (1952).Google Scholar
  238. Horecker, B. L.: Transaldolase: The formation of fructose-6-phosphate from sedoheptulose-7-phosphate. J. Amer. Chem. Soc. 75, 2021 (1953).Google Scholar
  239. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661 (1953).Google Scholar
  240. Hotchkiss, H. D.: Gramicidin, tyrocidine and tyrothricin. Adv. Enzymol. 4, 153–200 (1944).Google Scholar
  241. Hübscher, G., M. Kiese u. R. Nikolas: Untersuchungen über Cytochrome. III. Cytochrom b aus Rinderherzen. Biochem. Z, 325, 223 (1954).PubMedGoogle Scholar
  242. Hunter jr., F. E.: Anaerobic phosphorylation due to a coupled oxydation-reduction between-a-ketoglutaric acid and oxalacetic acid. J. of Biol. Chem. 177, 361–372 (1949).Google Scholar
  243. Hunter jr., F. E.: Oxidative phosphorylation during electron transport. In: Phosphorus metabolism, Bd. 1, S. 297. Baltimore 1951.Google Scholar
  244. Hunter jr., F. E., and W. S. Hrxon: Anaerobic phosphorylation due to the dismutation of a-ketoglutaratic acid in the presence of ammonia. J. of Biol. Chem. 181, 67–79 (1949).Google Scholar
  245. Hurtado, A., N. Kaltreider H. W. S. Mccann: Respiratory adaption to anoxemia. Amer. J. Physiol. 109, 626–637 (1934).Google Scholar
  246. Hutchens, J. O., M. J. Kopak and M. E. Krahl: The cytochromoxidase content of centrifugally separated fractions of unfertilized arbacia eggs. J. Cellul. a. Comp. Physiol. 20, 113 (1942).Google Scholar
  247. Huys, J. V.: Isolement et cristallisation de la myoglobin de thon. Arch. internat. Physiol. 62, 296–297 (1954).Google Scholar
  248. Irving, L.: Respiration in diving mammals Physiologic. Rev. 19, 112–131 (1939).Google Scholar
  249. Jacobs, E., and D. R. Sanadi: Some components of the oxidative phosphorylation system. Biochim. et Biophysica Acta 17, 290–292 (1955).Google Scholar
  250. Jacobs, M. H.: Diffusion processes. Erg. Biol. 12, 1–160 (1935).Google Scholar
  251. Jancóaftu, A: Contribution to the knowledge of breathing of cladocera daphnia pular. Czech. English summary Publ. Fas. Sci. Univ. Masaryk, Ser. M 1, Nr 305 (1948).Google Scholar
  252. Johnson, M. J.: The role of aerobic phosphorylation in the PASTEUR-Effect. Science (Lancaster, Pa.) 94, 200–202 (1941).PubMedGoogle Scholar
  253. Johnson, M. J.: Oxidation-reduction potentials. In H. A. Lardy, Respiratory enzyms, S. 58–70. Minneapolis: Burgess Publ. Comp. 1950.Google Scholar
  254. Jones, E. S., B. G. Maegraith and H. N. Sculthorpe: The constant-volume (WARBURG) manometer for blood-oxygen determination. Amer. Trop. Med. a. Parasitol. 45, 223 (1951).Google Scholar
  255. Jones, M. E., S. Black, R. M. Flynn and F. Lipmann: Acetyl coenzyme A synthesis through pyrophosphoryl split of adenosine triphosphate. Biochim. et Biophysica Acta 12, 141 (1953).Google Scholar
  256. Jonnis, J. H. P.: On the spreading of different haemoglobins, muscle haemoglobins and cytochrom c. Biochemie. J. 33, 1743–1751 (1939).Google Scholar
  257. Judah, J. D.: The action of 2,4-dinitrophenol on oxidative phosphorylation. Biochemic. J. 49, 271–285 (1951).Google Scholar
  258. Kalckar, H. M.: Coupling between phosphorylations and oxidations in kidney extracts. Enzymologia (Den Haag) 6, 209 (1939).Google Scholar
  259. Kalckar, H. M.: The nature of phosphoric esters formed in kidney extracts. Biochemie. J. 33, 631 (1939).Google Scholar
  260. Kalckar, H. M.: The role of myokinase in transphosphorylations. II. The enzymatic action of myokinase on adenine nucleotides. J. of Biol. Chem. 148, 127 (1943).Google Scholar
  261. Kaplan, N. O.: Thermodynamics and mechanism of the phosphate bond. In J. B. Summer U. K. Myrback, The Enzymes, Bd. II/1, S. 55–113. New York: Academic Press 1951.Google Scholar
  262. Katsunuma, S.: Zur Frage der Naphtholblau-Oxydasereaktion des Nervensystems. Beitr. path. Anat. 60, 150 (1915).Google Scholar
  263. Katsunuma, S.: Intracelluläre Oxydation und Indophenolblausynthese. Histochemische Stud ie über die „Oxydasereaktion“ im tierischen Gewebe. Jena: Gustav Fischer 1924.Google Scholar
  264. Kaufmann, S.: Soluble-ketoglutaric dehydrogenase from heart muscle and coupled phosphorylation. In W. D. MCELROY u. B. GLASS, Phosphorus metabolism, Bd. I, S. 370. Baltimore 1951.Google Scholar
  265. Kayser, C., E. le Breton et G. Schaefer: Grandeur de la respiration des tissus et masse active au cours du développement des organismes. C. r. Acad. Sci. Paris 181, 255 (1925).Google Scholar
  266. Keilin, D.: On cytochrome, a respiratory pigment, common to animals, yeast and higher plants. Proc. Roy. Soc. Lond., Ser. B 98, 312 (1925).Google Scholar
  267. Keilin, D.: Cytochromes and respiratory encymes. Proc. Roy. Soc. Lond., Ser. B 104, 206 (1929).Google Scholar
  268. Keilin, D.: Cytochrome and intracellular oxidase. Proc. Roy. Soc. Lond., Ser. B 106, 418 (1930).Google Scholar
  269. Keilin, D., and E. F. Hartree: Cytochrome oxidase. Proc. Roy. Soc. Lond., Ser. B 125, 171 (1938).Google Scholar
  270. Keilin, D.: Succinic dehydrogenase-cytochrome system of cells. Intracellular respiratory system catalysing aerobic oxidation of succinic acid. Proc. Roy. Soc. Lond., Ser. B 129, 277 (1940).Google Scholar
  271. Keilin, D.: Purification and properties of cytochrome c. Biochemie. J. 39, 289 (1945).Google Scholar
  272. Keilin, D.: Activity of the cytochrome system in heart muscle preparations. Biochemie. J. 41, 500 (1947).Google Scholar
  273. Keilin, D.: Activity of the succinic dehydrogenase-cytochrome system in different tissue preparations. Biochemie. J. 44, 205 (1949).Google Scholar
  274. Kennedy, E. P., and A. L. Leiininger: Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J. of Biol. Chem. 179, 957 (1949).Google Scholar
  275. Kennedy, R. P., and G. H. Whipple: The identity of muscle hemoglobin and blood hemoglobin. Amer. J. Physiol. 76, 685 (1926).Google Scholar
  276. Kennedy, R. P.: The hemoglobin of smooth and striated muscle of the fowl. Amer. J. Physiol. 87, 192 (1928).Google Scholar
  277. Kestner, O.: Über die Oberflächenregel des Stoffwechsels. Pflügers Arch. 234, 290 (1934).Google Scholar
  278. Kety, S. S.: The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3, 1 (1951).PubMedGoogle Scholar
  279. Kety, S. S., and C. F. Schmidt: Effects of alterations in the arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. Amer. J. Physiol. 143, 53 (1945).Google Scholar
  280. Kiese, M.: Tuber das Porphyrin des sauerstoffübertragenden Fermentes. Naturwiss. 39, 403 (1952).Google Scholar
  281. Kiese, M., u. D. Reinwein: Untersuchungen über Cytochrome. II. Die Reaktion des in Cholatlösung isolierten sauerstoffübertragenden Ferments mit Cytochrom c und Sauerstoff. Biochem. Z. 324, 51 (1953).PubMedGoogle Scholar
  282. Kinoshita, J. H., and T. Masurat: The direct oxidative carbohydrate cycle of bovine corneal epithelium. Arch. of Biochem. a. Biophysics 53, 9 (1954).Google Scholar
  283. Kittel, A.: Körpergröße, Körperweiten und Energiebilanz. II. Der Sauerstoffverbrauch der Insekten in Abhängigkeit von der Körpergröße. Z. vergl. Physiol. 28, 533 (1941).Google Scholar
  284. Kitzinger, C., u. Th. Benzinger: Wärmetönung der Adenosintriphosphorsäure-Spaltung. Z. Naturforsch. 106, 375 (1955).Google Scholar
  285. Kleiber, M.: Body size and metabolism of liver slices in vitro. Proc. Soc. Exper. Biol. a. Med. 48, 419 (1941).Google Scholar
  286. Kleiber, M.: Body size and metabolic rate. Physiologic. Rev. 27, 511 (1947).Google Scholar
  287. Kleiber, M., H. H. Cole and A. H. Smith: Metabolic rate of rat fetuses in vitro. J. Cellul. a. Comp. Physiol. 22, 167 (1943).Google Scholar
  288. Klug, A., F. Kreuzer and F. J. W. Roughton: Simultaneous diffusion and chemical reaction in thin layers of haemoglobin solution. Proc. Roy. Soc. Lond. Ser. B 145, 452 (1956).Google Scholar
  289. Knoop, F.: Der Abbau aromatischer Säuren im Tierkörper. Beitr. chem. Physiol. n. Path. 6, 150 (1905).Google Scholar
  290. Korkes, S., A. del Campillo and S. Ocnoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. IV. Isolation and properties of an adaptive „male“ enzyme from Lactobacillus arabinosus. J. of Biol. Chem. 187, 891 (1950).Google Scholar
  291. Kornberg, A.: The participation of inorganic phosphate in the reversible enzymatic synthesis of diphosphopyridine nucleotide. J. of Biol. Chem. 176, 1475 (1948).Google Scholar
  292. Kortüm, G.: Einführung in die chemische Thermodynamik. Göttingen: Vandenhoeck & Ruprecht 1949.Google Scholar
  293. Kortüm, G.: Lehrbuch der Elektrochemie. Weinheim 1952.Google Scholar
  294. Krahl, M. E.: Metabolic activities and cleavage of eggs of the sea urchin, Arbacia punctulata. A review. Biol. Bull. 98, 176 (1950).Google Scholar
  295. Krahl, M. E., A. K. Keltch, C. E. Neubeck and G. H. A. Clowes: Studies on cell metabolism and cell division. V. Cytochrome oxidase activity in the eggs of Arbacia punctulata. J. Gen. Physiol. 24, 597 (1941).PubMedGoogle Scholar
  296. Kramer, G.: Der Ruheumsatz von Eidechsen und seine quantitative Beziehung zur Individuengröße. Z. vergl. Physiol. 20, 600 (1934).Google Scholar
  297. Krebs, H. A.: Größe der Atmung und Gärung in lebenden Zellen. In OPPENHEIMERS Handbuch der Biochemie, Erg.-Bd. 1/2, S. 863. 1933.Google Scholar
  298. Krebs, H. A.: The citric acid cycle. Biochemie. J. 34, 460 (1940).Google Scholar
  299. Krebs, H. A.: The citric acid cycle and the Szent-GYörgyicycle in pigeon breast muscle. Biochemie. J. 34, 775 (1940).Google Scholar
  300. Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Adv. Enzymol. 3, 191 (1943).Google Scholar
  301. Krebs, H. A.: Body size and tissue respiration. Biochim. et Biophysica Acta 4, 249 (1950).Google Scholar
  302. Krebs, H. A.: The tricarboxylic acid cycle. In D. Greenberg, Chemical pathways of metabolism, Bd. I, S. 109. New York: Academic Press 1954.Google Scholar
  303. Krebs, H. A.: Die Steuerung der Stoffwechselvorgänge. Dtsch. med. Wschr. 1956, 4.Google Scholar
  304. Krebs, H. A., u. W. A. Joaxson: The role of citric acid in intermediate metabolism in animal tissues. Enzymologica (Den Haag) 4, 148 (1937).Google Scholar
  305. Kreuzer, F.: Über die Gültigkeit des FicKschen Gesetzes bei der Diffusion des Sauerstoffs in dünne Schichten hochkonzentrierter Hämoglobinlösungen. Helvet. physiol. Acta C 7, 47 (1949).Google Scholar
  306. Kreuzer, F.:Über die Diffusion des Sauerstoffs durch Erythrocytensuspensionen verschiedener Konzentration in Ringer-Lösung. Helvet. physiol. Acta 9, 185 (1951).Google Scholar
  307. Kreuzer, F.: Modellversuche zum Problem der Sauerstoffdiffusion in den Lungen. Habil.-Schr. Basel: Benno Schwabe 1953.Google Scholar
  308. Krogh, A.: On the cutaneous and pulmonary respiration of the frog. Skand. Arch. Physiol (Berl. u. Lpz.) 15, 329 (1904).Google Scholar
  309. Krogh, A.: The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion. J. of Physiol. 52, 391 (1919).Google Scholar
  310. Krüger, F.: Die Beziehung des Sauerstoffverbrauches zur Körperoberfläche beim Schweinespulwurm (Ascaris lumbricoides). Z. wiss. Zool. 152, 547 (1940).Google Scholar
  311. Krusius, F. E.: Tierexperimentelle Untersuchungen über die Ausscheidung von Brenztraubensäure, a-Ketoglutarsäure und Citronensäure, sowie einiger anderer mit deren Umsatz nahe verknüpfter Verbindungen im Harn. Acta physiol. scand. (Stockh.) 2, Suppl. 3 (1940).Google Scholar
  312. Krywienczyk, J.: Körpergröße, Körperzeiten und Energiebilanz. IV. Körpergröße, 02-Konsum und Kriechgeschwindigkeit bei Prosobranchiern. Z. vergl. Physiol. 34, 6 (1952).Google Scholar
  313. Krywienczyk, J.: Körpergröße, 02-Konsum und Kriechgeschwindigkeit bei Wasserpulmonaten. Z. vergl. Physiol. 34, 14 (1952).Google Scholar
  314. Kum., E. L.: The distribution of fumarase activity in mouse liver homogenates. J. of Biol. Chem. 207, 361 (1954).Google Scholar
  315. Kuhn, R., u. D. Jerchel: Über Invertseifen. VIII. Reduktion von Tetrazoliumsalzen durch Bakterien, gärende Hefe und keimende Samen. Ber. dtsch. them. Ges. B 74, 941, 949 (1941).Google Scholar
  316. Laidlaw, G. F., and S. N. Blackberg: Melanoma studies. I. The dopa reaction in general pathology. Amer. J. Path. 8, 477 (1932).PubMedGoogle Scholar
  317. Laidlaw, G. F.: Melanoma studies. II. A simplified technique for the dopa reaction. Amer J Path. 8, 491 (1932).PubMedGoogle Scholar
  318. Lamprecht, W.: Zur Wirkung des Strophantins auf den Herzstoffwechsel. Dtsch. med. Wschr. 1956, 534.Google Scholar
  319. Landoltbörnstein: Physikalisch-chemische Tabellen, 2. Aufl. Berlin 1923–1936.Google Scholar
  320. Lang, K.: Der intermediäre Stoffwechsel. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  321. Lang, K.: Stoffwechsel der Fette. In B. Flaschenträger u. E. Lehnartz, Physiologische Chemie, Bd. II a, S. 792. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  322. Lang, K., u. G. Siebert: Die chemischen Leistungen der morphologischen Zellelemente. In B. Flaschenträger u. E. Lehnartz, Physiologische Chemie, Bd. II/1b, S. 1064. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  323. Langen, C. D. de: Myoglobin und Myoglobinurie. Acta med. scand. (Stockh.) 124, 213 (1946).Google Scholar
  324. Lardy, H.: Respiratory enzymes, 2. Aufl. Minneapolis: Burgess Publ. Comp. 1950.Google Scholar
  325. Lardy, H.: Energetic coupling and the regulation of metabolic rates. Proc. 3. Internat. Congr. Biochem. 1955, S. 287. 1956.Google Scholar
  326. Lardy, H. A., and H. Wellman: Oxidative phosphorylations: Role of inorganic phosphate and acceptor systems in control of metabolic rates. J. of Biol. Chem. 195, 215 (1952).Google Scholar
  327. Lardy, H. A.: The catalytic effect of 2,4 dinitrophenol on adenosine triphosphate hydrolysis by cell particles and soluble enzymes. J. of Biol. Chem. 201, 357 (1953).Google Scholar
  328. Lassen, N. A., u. O. Munck: The cerebral blood flow in man determined by the use of radioactive krypton. Acta physiol. scand. (Stockh.) 33, 30 (1955).PubMedGoogle Scholar
  329. Lavoisier, A. L.: Expériences sur la respiration des animaux et sur les changements qui arrivent à l’air en passant par leurs poumons. Mem. Acad. Sci. Paris 1777, 185.Google Scholar
  330. Lavoisier, A. L.: Mémoire sur la formation de l’acide du charbon. Mem. Acad. Sci. Paris 1781, 448.Google Scholar
  331. Lavoister, A. L., et P. S. de Laplace: Mémoire sur la chaleur. Mem. Acad. Sci. Paris 1780, 355.Google Scholar
  332. Lawrie, R. A.: Some observations on factors affecting myoglobin concentrations in muscle. J. Aggricult. Sci. 40, 356 (1950).Google Scholar
  333. Lawrie, R. A.: Cristalline forms of myoglobin from horse heart. Nature (Lond.) 167, 802 (1951).Google Scholar
  334. Lawrie, R. A.: Biochemical differences between red and white muscle. Nature (Lond.) 170, 122 (1952).Google Scholar
  335. Leach, S. A.: The mechanism of enzymic oxidoreduction. Adv. Enzymol. 15, 1 (1954).Google Scholar
  336. le Breton, E., et Ch. Kayser: La loi des tailles et la respiration des tissus in vitro chez les homéothermes. C. r. Acad. Sci. Paris 183, 397 (1926).Google Scholar
  337. Lee, J. S., and N. Lifson: Studies on the conversion of acetate, lactate and malonate to succinate in the intact rat. J. of Biol. Chem. 193, 253 (1951)Google Scholar
  338. Lehmann, G.: Das Gesetz der Stoffwechselreduktion in der höheren Tierwelt. Z. Naturforsch. 6b, 216 (1951).Google Scholar
  339. Lehninger, A. L.: Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen. II. J. of Biol. Chem. 178, 625 (1949).Google Scholar
  340. Lehninger, A. L.: Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J. of Biol. Chem. 190, 345 (1951).Google Scholar
  341. Lehninger, A. L.: Die Rolle der Mitochondrien bei Oxydations-und Phosphorylierungsprozessen. Z. Naturforsch. 7b, 256 (1952).Google Scholar
  342. Lehninger, A. L.: Oxidative phosphorylation. Harvey Lect. 49, 176 (1953/54).Google Scholar
  343. Lenvinger, A. L., M. Hassan and H. C. Sudduth: Phosphorylation coupled with the oxidation of ascorbic acid by isolated mitochondria. J. of Biol. Chem. 210, 911 (1954).Google Scholar
  344. Lehninger, A. L., and S. W. Smith: Efficiency of phosphorylation coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen. J. of Biol. Chem. 181, 415 (1949).Google Scholar
  345. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments. New York: Interscience Publ. 1949.Google Scholar
  346. Lennerstrand, A.: Tuber die Wirkung von Phosphat auf Oxydation und Phosphorylierung in dem durch Fluorid vergifteten Apo-Cymasesystem. Biochem. Z. 289, 104 (1936).Google Scholar
  347. Lennerstrand, A.: Ober die Kopplung der Atmung und der Phosphorylierung der Adenylsäure im Hämolysat der roten Pferdeblutkörperchen. Naturwiss. 25, 347 (1937).Google Scholar
  348. Levintow, L., and A. Meister: Reversibility of the enzymatic synthesis of glutamine. J. of Biol. Chem. 209, 265 (1954).Google Scholar
  349. Lewis, G. N., and M. Randall: Thermodynamics and free energy of chemical substances. New York: McGraw-Hill Book Comp. 1923.Google Scholar
  350. Lihbecq, C.: La lésion biochimique dans l’intoxication par le fluoroacetate. Rev. méd. Liège 9, 764 (1954).Google Scholar
  351. Lieben, C., and R. A. Peters: The toxicity of fluoroacetate and the tricarboxylic acid cycle. Biochim. et Biophysica Acta 3, 215 (1949).Google Scholar
  352. Lieben, F.: Geschichte der physiologischen Chemie. Leipzig u. Wien 1935.Google Scholar
  353. Liebsch, W.: Tuber die Atmung einiger Heliciden. Zool. Jb., Abt. allg. Zool. u. Physiol. 46, 161 (1929).Google Scholar
  354. Lifson, N., G. B. Gordon, M. B. Visscher and O. Nier: The fate of utilized molecular oxygen and the source of the oxygen of respiratory carbon dioxide, studied with the aid of heavy oxygen. J. of Biol. Chem. 180, 803 (1949).Google Scholar
  355. Linzbach, A. J.: Das ökonomische Prinzip in der Sauerstoffversorgung der Nieren, des Herzens und des Stützgewebes. Z. inn. Med. 2, 144 (1947).Google Scholar
  356. Linzbach, A. J.: Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchows Arch. 314, 534 (1947).PubMedGoogle Scholar
  357. Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99 (1941).Google Scholar
  358. Lipmann, F.: Metabolic process patterns. In D. E. Green, Currents in biochemical research, S. 137. New York: Interscience Publ. 1946.Google Scholar
  359. Loewy, A.: Gas-und Energiewechsel. Tab. biol. (Berl.) 3, 461 (1926).Google Scholar
  360. Loewy, A., u. H. Schroetter: Tuber den Energieverbrauch bei musikalischer Betätigung. Pflügers Arch. 211, 1 (1926).Google Scholar
  361. Lohmann, K., u. O. Meyerhof: Tuber die enzymatische Umwandlung von Phosphoglycerinsäure in Brenztraubensäure und Phosphorsäure. Biochem. Z. 273, 60 (1934).Google Scholar
  362. Long, C.: Studies involving enzymic phosphorylation. I. The hexokinase activity of rat tissues. Biochemie. J. 50, 407 (1952).Google Scholar
  363. Loomis, W. F., and F. Lipmann: Reversible inhibition of the coupling between phosphorylation and oxidation. J. of Biol. Chem. 173, 807 (1948).Google Scholar
  364. Ludwig, W., u. J. Krywienczyk: Körpergröße, Körperzeiten und Energiebilanz. III. Der Sauerstoffverbrauch von Muscheln in Abhängigkeit von der Körpergröße. Z. vergl. Physiol. 32, 464 (1950).Google Scholar
  365. Lübbers, D.: Die Sauerstoffversorgung und Atmung des isolierten überlebenden Froschherzventrikels. Ein Beitrag zur Energetik des Gewebsstoffwechsels. Habil.-Schr. Kiel 1956.Google Scholar
  366. Lundbæk, K., and E. S. Goranson: Increased muscle phosphorylase activity in the starved rat. Nature (Lond.) 162, 1002 (1948).Google Scholar
  367. Lynen, F.: Die Rolle der Phosphorsäure bei Dehydrierungsvorgängen und ihre biologische Bedeutung. Naturwiss. 30, 398 (1942).Google Scholar
  368. Lynen, F.: Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Federat. Proc. 12, 683 (1952).Google Scholar
  369. Lynen, F.: Diskussion zum Vortrag von H A LARDY, Energetic coupling and the regulation of metabolic rates. Proc. 3. Internat. Congr. Biochem. 1955, S. 294. 1956.Google Scholar
  370. Lynen, F., u. R. Koeniosberger: Zum Mechanismus der PAsTEURschen Reaktionen. IV. Der Phosphat-Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. Tuber den aeroben Phosphat-bedarf der Hefe. Liebigs Ann. 573, 60 (1951).Google Scholar
  371. Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. et Biophysica Acta 12, 299 (1953).Google Scholar
  372. Lynen, F., u. E. Reichert: Zur chemischen Struktur der „aktivierten Essigsäure“. Angew. Chem. 63, 47 (1951).Google Scholar
  373. Lynen, F., E. Reichert u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure“, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 574, 1 (1951).Google Scholar
  374. Lynen, F., L. Wessely, O. Wieland u. L. Rueff: ZUT ß-Oxydation der Fettsäuren. Angew. Chem. 64, 687 (1952).Google Scholar
  375. Mackler, B.: DPNH oxidase. Federat. Proc. 14, 248 (1955).Google Scholar
  376. Macmunn, C. A.: Researches on rnyohaematin and histohaematins. Philosophic. Trans. Roy. Soc. Lond. 177, 267 (1886).Google Scholar
  377. Maehly, A. C., and B. Chance: The assay of catalases and peroxidases. In D. Glicn, Methods of biochemical analysis, Bd. I, S. 357ff. New York: Intersciences Publ. 1954.Google Scholar
  378. Mauler, H. R.: Metalloflavoproteins and electron transport. Proc. 3. Internat. Congr. Biochem. 1955, S. 252. 1956.Google Scholar
  379. Mauler, H. R.: Nature and function of metalloflavoproteins. Adv. Enzymol. 17, 233 (1956).Google Scholar
  380. Maley, G. F., and H. A. Lardy: Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxidative phosphorylation. J. of Biol. Chem. 204, 435 (1953).Google Scholar
  381. Maley, G. F.: Phosphorylation coupled with the oxidation of reduced cytochrome c. J. of Biol. Chem. 210, 903 (1954).Google Scholar
  382. Maley, G. F., and G. W. E. Plaut: Yields of oxidative phosphorylation by heart mitochondria. J. of Biol. Chem. 205, 297 (1953).Google Scholar
  383. Maley, G. F.: Oxidative phosphorylation by heart muscle mitochondria. Biochim. et Biophysica Acta 14, 443 (1954).Google Scholar
  384. Manchot, W.: Freiwillige Oxydation. Leipzig 1900.Google Scholar
  385. Marinesco, G.: Recherches histologiques sur les oxydases. C. r. Soc. Biol. Paris 82, 96 (1919).Google Scholar
  386. Marinesco, G.: Recherches histo-chimiques sur le rôle des ferments oxydants dans les phénomènes de la vie à l’état normal et pathologique. Ann. d’Anat. path. 1, 121 (1924).Google Scholar
  387. Martin, A. W., and F. A. Fuhrmann: The relationship between basal metabolism and summated tissue respiration in the dog. Amer. J. Physiol. 133, 379 (1941).Google Scholar
  388. Martius, C.: Die tierische Gewebsatmung. Erg. Enzymforsch. 8, 247 (1939).Google Scholar
  389. Martius, C.: Die Unterbrechung des CitronensäureCyklus durch Fluoressigsäure. Liebigs Ann. 561, 227 (1949).Google Scholar
  390. Martius, C.: Die Stellung des Phyllochinons (Vitamin K) in der Atmungskette. Biochem. Z. 326, 26 (1954).PubMedGoogle Scholar
  391. Martius, C.: Der oxydative Endabbau. In B. FLASCHENTRÄGER u. E. LEHNARTZ, Physiologische Chemie, Bd. IIb, S. 1025. BerlinGöttingen-Heidelberg 1954.Google Scholar
  392. Martius, C.: Die Wirkungsweise des Schilddrüsenhormons. 5. Kolloquium der Ges. Physiol. Chemie, Mosbach 1955, S. 143.Google Scholar
  393. Martius, C.: Thyroxin und oxydative Phosphorylierung. Proc. 3. Internat. Congr. Biochem. 1955, S. 1. 1956.Google Scholar
  394. Martius, C., H. Bieling U. D. Nitzlnzow: Vergleich der Wirkung von Thyroxin auf den Grundumsatz und die Atmungskettenphosphorylierung. Biochem. Z. 327, 163 (1955).PubMedGoogle Scholar
  395. Martius, C., u. B. Hess: Über den Wirkungsmechanismus des Schilddrüsenhormons. Biochem. Z. 326, 191 (1955).PubMedGoogle Scholar
  396. Martius, C., and F. Lynen: Probleme des Citronensäurecyklus. Adv. Enzymol. 10, 167 (1950).Google Scholar
  397. Martius, C., and D. Nitzlitzow: Über den Wirkungsmechanismus des Dicumarols und verwandter Verbindungen. Biochim. et Biophysica Acta 12, 134 (1953).Google Scholar
  398. Martius, C.: Oxydative Phosphorylierung und Vitamin K-Mangel Acta Biochim. et Biophysica 13, 152 (1954).Google Scholar
  399. Martius, C., u. R. Strufe: Phyllochinonreduktase. Biochem. Z. 326, 24 (1954).Google Scholar
  400. McIlwain, H., and S. Ochs: Absence of electrical responses of brain slices on in vitro stimulation. Amer. J. Physiol. 171, 128 (1952).PubMedGoogle Scholar
  401. McShan, W. H.: Dehydrogenases. In H. A. Lardy, Respiratory Enzymes, S. 101. Minneapolis 1950.Google Scholar
  402. Melnicr, J. L.: The photochemical spectrum of cytochrome oxidase. J. of Biol. Chem. 146, 385 (1942).Google Scholar
  403. Meyerhof, O.: Über den Einfluß des Sauerstoffs auf die alkoholische Gärung der Hefe. Biochem. Z. 162, 43 (1925).Google Scholar
  404. Meyerhof, O.: New investigations on enzymatic glycolysis and phosphorylation. Experientia (Basel) 4, 169 (1948).Google Scholar
  405. Meyerhof, O., u. K. Lohmann: Über energetische Wechselbeziehungen zwischen dem Umsatz der Phosphorsäureester im Muskelextrakt. Biochem. Z. 253, 431 (1932).Google Scholar
  406. Meyerhof, O.: Über die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonphosphorsäure. Biochem. Z. 273, 73 (1934).Google Scholar
  407. Meyerhof, O., P. Ohlmeyer u. W. Möhle: Über die Koppelung zwischen Oxydoreduktion und Phosphatveresterung bei anaerober Kohlenhydratspaltung. Biochem. Z. 297, 113 (1938).Google Scholar
  408. Meyerhof, O., and J. R. Wilson: Studies on the encymatic system of tumor glycolysis. I. Glycolysis of free sugar in homogenates and extracts of transplanted rat sarcoma. Arch. of Biochem. 21, 1 (1949).Google Scholar
  409. Meyerhof, O.: Studies on the encymatic system of tumors. II. Comparative study of rat and mouse tumor homogenates. Arch. of Biochem. 21, 22 (1949).Google Scholar
  410. Meyerhof, O.: Comparative study of the glycolysis and ATP-ase activity in tissue homogenates. Arch. of Biochem. 23, 246 (1949).Google Scholar
  411. Michaelis, L.: Fundamentals of oxidation and reduction. Greens Currents Biochem. Res., S. 207. New York 1946.Google Scholar
  412. Michaelis, L.: Biological oxidations and reductions. Annual Rev. Biochem. 16, 1 (1947).Google Scholar
  413. Michaelis, L.: Theory of oxidation-reduction. In Sumner u. Myrbäck, The Encymes, Bd. II/1. New York 1951.Google Scholar
  414. Michaelis, L., u. M. L. Menten: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333 (1913).Google Scholar
  415. Millikan, G. A.: The kinetics of muscle haemoglobin. Proc. Roy. Soc. Lond., Ser. B 120, 366 (1936).Google Scholar
  416. Millikan, G. A.: Muscle hemoglobin. Physiologic. Rev. 19, 503 (1939).Google Scholar
  417. Minami, S.: Versuche an überlebendem Carcinomgewebe. (Atmung und Glykolyse.) Biochem. Z. 142, 334 (1923).Google Scholar
  418. Elwynhûghes, E. A.: The kinetics of encyme reactions. Erg. Enzymforsch. 2, 1 (1933).Google Scholar
  419. Elwynhûghes, E. A.: Physical chemistry and chemical kinetics of enzymes. In: The Enzymes, Bd. I/1, S. 28. New York 1950.Google Scholar
  420. Mudge, G. H., and J. V. Taggart: Effect of 2,4 dinitrophenol on renal transport mechanisms in the dog. Amer. J. Physiol. 161, 173 (1950).PubMedGoogle Scholar
  421. Müller, I.: Untersuchungen zur Gesetzlichkeit des Wachstums. IX. Die Abhängigkeit der Atmung von der Körpergröße bei Dixippus morosus und ihre Beziehung zum Wachstum. Z. vergl. Physiol. 30, 139 (1943).Google Scholar
  422. Müller, I.: Untersuchungen über die Gesetzlichkeit des Wachstums. X. Weiteres zur Frage der Abhängigkeit der Atmung von der Körpergröße. Biol. Zbl. 63, 446 (1943).Google Scholar
  423. Myers, J. D.: The hepatic blood flow and splanchnic oxygen consumption of man, their estimation from urea production or bromsulphalein excretion during catheterization of the hepatic veins. J. Clin. Invest. 26, 1130 (1947).Google Scholar
  424. Myers, J. D., and J. B. Hickam: An estimation of the hepatic blood flow and splanchnos oxygen consumption in heart failure. J. Clin. Invest. 27, 620 (1948).PubMedGoogle Scholar
  425. Needham, D. M.: Red and white muscle. Physiologic. Rev. 6, 1 (1926).Google Scholar
  426. Needham, D. M., and R. K. Pillai: The coupling of oxido-reductions and dismutations with esterification of phosphate in muscle. Biochemie. J. 31, 1837 (1937).Google Scholar
  427. Needham, J.: Chemical heterogony and the ground plan of animal growth. Biol. Rev. Cambridge Philos. Soc. 9, 79 (1934).Google Scholar
  428. Negelein, E.: Uber die Extraktion eines von Bluthämin verschiedenen Hämins aus dem Herzmuskel. Biochem. Z. 266, 412 (1933).Google Scholar
  429. Netter, H.: Die Feinstruktur der Zelle als dynamisches Phänomen. Verh. dtsch. Ges. Path. (33. Tagg. Kiel) 1949.Google Scholar
  430. Netter, H.: Biologische Physikochemie. Potsdam 1951.Google Scholar
  431. Neumann, K., u. G. Koch: Übersicht über die feinere Verteilung der Succinodehydrogenase in Organen und Geweben verschiedener Säugetiere, besonders des Hundes. Z. physiol. Chem. 295, 35 (1953).Google Scholar
  432. Niemeyer, H., and E. Figueroa: Influence of glycogen content on the effect of 2,4-dinitrophenol on the oxygen uptake by rat liver slices. Arch. of Biochem. a. Biophysics 54, 135 (1955).Google Scholar
  433. Noell, W., H. M. Schneider: Über die Durchblutung und Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. III. Mitt.: Die arterio-venöse Sauerstoff-und Kohlensäuredifferenz. Pflügers Arch. 246, 207 (1942).Google Scholar
  434. Ochoa, S.: Nature of oxidative phosphorylation in brain tissue. Nature (Lond.) 146, 267 (1940).Google Scholar
  435. Ochoa, S.: Efficiency of aerobic phosphorylation in cell free heart extracts. J. of Biol. Chem. 151, 493–506 (1943).Google Scholar
  436. Ochoa, S.: Enzymic mechanisms in the citric acid cycle. Adv. Enzymol. 15, 183–270 (1954).Google Scholar
  437. Ochoa, S., A. H. Mehler and A. Kornberg: Reversible oxydative decarboxylation of malic acid. J. of Biol. Chem. 167, 871–872 (1947).Google Scholar
  438. Ochoa, S., A. H. Mehler and A. Kornberg: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. I. Isolation and properties of an enzyme from pigeon liver catalyzing the reversible oxidative decarboxylation of 1-malic acid. J. of Biol. Chem. 174, 979–1000 (1948).Google Scholar
  439. Ochoa, S., J. B. V. Salles and P. J. Ortiz: Biosynthesis of dicarbolic acids by carbon dioxide fixation. III. Enzymatic synthesis of 1-malic acid by reductive carboxylation of pyruvic acid. J. of Biol. Chem. 187, 863–874 (1950).Google Scholar
  440. Ostberg, O.: Studien über die Citronensäureausscheidung der Menschenniere in normalen und pathologischen Zuständen. Skand. Arch. Physiol. (Berl. u. Lpz.) 62, 81–222 (1931).Google Scholar
  441. Ogston, A. G., and O. Smithies: Some thermodynamic and kinetic aspects of metabolic phosphorylation. Physiologic. Rev. 28, 283–303 (1948).Google Scholar
  442. Ohlmeyer, P.: Wärmemessung bei Fermentreaktionen. Z. Naturforsch. 1, 30–35 (1946).Google Scholar
  443. Opitz, E.: Energieumsatz des Gehirns in situ unter aeroben und anaeroben Bedingungen. 3. Kolloquium Ges. Physiol.-Chem., Mosbach, S. 66–101. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  444. Opitz, E.: Der Stoffwechsel des Gehirns und seine Veränderung bei Kreislaufstillstand. Verh. dtsch. Ges. Kreislaufforsch. 19, 26–44 (1953).Google Scholar
  445. Opitz, E., u. H. Bartels: Gasanalyse. In Hoppe-Seyler/Thierfelders Handbuch der physiologisch-und pathologisch-chemischen Analyse, 10. Aufl., Bd. II, S. 183. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  446. Opitz, E., u. H. Samlert: Uber Cytochrom-c-Gehalt und Wachstumsintensität bei menschlichen Feten. Pflügers Arch. 251, 355–368 (1949).Google Scholar
  447. Opitz, E., u. M. Schneider: Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Erg. Physiol. 46, 126–260 (1950).Google Scholar
  448. Opitz, E., u. G. Thews: Einfluß von Frequenz und Faserdicke auf die Sauerstoffversorgung des menschlichen Herzmuskels. Arch. Kreislaufforsch. 18, 137–152 (1952).Google Scholar
  449. Oster, K. A., and N. C. Schlossmann: Histochemical demonstration of amine oxidase in the kidney. J. Cellul. a. Comp. Physiol. 20, 373–378 (1942).Google Scholar
  450. Page, G. A. Le, and W. C. Schneider: Centrifugal fraction of glycolytic enzymes in tissue homogenates. J. of Biol. Chem. 176, 1021–1027 (1948).Google Scholar
  451. Parks, G. S., and H. M. Huffman: The free energies of some organic compounds. New York 1932.Google Scholar
  452. Patrusev, V. J.: On the inheritance of biochemical characters by animals and its relation to their growth. II. Glutathion concentration in the blood and differences in size in breeds of farm animals. C. r. Acad. Sci. USSR., N. S. 14, 573–577 (1937).Google Scholar
  453. Paul, K. G.: The iron-containing Enzymes. In J. B. SUMNER u. K. MYRBACK, The Enzymes, Bd. II/1, S. 357–396. New York 1951.Google Scholar
  454. Paul, M. H., u. E. Sperling: Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondria’ density in striated muscle. Proc. Soc. Exper. Biol. a. Med. 79, 352 (1952).Google Scholar
  455. Pearce, J. M.: Age and tissue respiration. Amer. J. Physiol. 114, 255–260 (1936).Google Scholar
  456. Feiss, C. N., and J. Field: A comparison of the influence of 2,4 dinitrophenol on the oxygen consumption of rat brain slices and homogenates. J. of Biol. Chem. 175, 49–56 (1948).Google Scholar
  457. Pirozynski, W. J., and L. v. Bertalanffy: Is the rate of basal metabolism determined by tissue respiration ? Rev. Canad. Biol. 11, 77–78 (1952).Google Scholar
  458. Plaut, G. W. E., and S. C. Sung: Diphosphopyridine nucleotide isocitric dehydrogenase from animal tissues. J. of Biol. Chem. 207, 305–314 (1954).Google Scholar
  459. Podolsky, R. J., and J. M. Sturtevant: The enthalpie change on adenosine triphosphate hydrolysis. I. J. of Biol. Chem. 217, 603 (1955).Google Scholar
  460. Poel, W. E.: Effect of anoxic anoxia on myoglobin concentration in striated muscle. Amer. J. Physiol. 156, 44–51 (1949).PubMedGoogle Scholar
  461. Potter, V. R.: Studies on the mechanism of hydrogen transport in animal tissues. III. Cyanide inhibition of cytochrome c reduction. J. of Biol. Chem. 137, 13–20 (1941).Google Scholar
  462. Potter, V. R.: Biological energy transformations and the cancer problem. Adv. Enzymol. 4, 201 (1944).Google Scholar
  463. Racker, E.: Alternate pathways of glucose and fructose metabolism. Adv. Enzymol. 15, 141–182 (1954).Google Scholar
  464. Racker, E., G. de la Haba and J. G. Leder: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75, 1010 (1953).Google Scholar
  465. Racker, E., and J. Krimsky: The mechanism of oxidation of aldehydes by glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 731–743 (1952).Google Scholar
  466. Ralph, P. H.: The histoohemical demonstration of hemoglobin in blood cells and tissue smears. Stain Technol. 16, 105–106 (1941).Google Scholar
  467. Renard, S.: Recherches sur la myoglobine de tortue. Arch. internat. Physiol. 61, 466–475 (1953).PubMedGoogle Scholar
  468. Ried, W.: Formazane und Tetrazoliumsalze, ihre Synthesen und ihre Bedeutung als Reduktionsindikatoren und Vitalfarbstoffe. Angew. Chem. 64, 391–396 (1952).Google Scholar
  469. Robinson, D. The muscle hemoglobin of seals as an oxygen store in diving. Science (Lancaster, Pa.) 90, 276–277 (1939).PubMedGoogle Scholar
  470. Roche, J., Y. Derrien et H. Vieil: Recherches sur la composition et la specifité des myoglobines (hémoglobines musculaires) de divers mammifères. Bull. Soc. Chim. biol. Paris 24, 1016 (1942).Google Scholar
  471. Rodkey, F. L., and E. G. Ball: Oxidation-reduction potentials of the cytochrome c system. J. of Biol. Chem. 182, 17–28 (1950).Google Scholar
  472. Röhmann, F., u. W. Spitzer: Über Oxydationswirkungen tierischer Gewebe. Ber. dtsch. chem. Ges. 28, 567 (1895).Google Scholar
  473. Rominger, E.: Über Versuche zur Rachitisheilung und -Verhütung ohne Anwendung von Licht oder D-Vitamin. Arch. Kinderheilk. 131, 53 (1944).Google Scholar
  474. Ronzovi, E., and E. Enrenfest: The effect of dinitrophenol on the metabolism of frog muscle. J. of Biol. Chem. 115, 749–768 (1936).Google Scholar
  475. Rosenthal, O., and D. L. Drabkin: Spectrophotometric studies. XI. The direct micro spectrophotometric determination of cytochrome c. J. of Biol. Chem. 149, 437–450 (1943).Google Scholar
  476. Rosenthal, O.: The cytochrome c content of normal and neoplastic mammalian epithelium and its correlation with body mass. J. of Biol. Chem. 150, 131–141 (1943).Google Scholar
  477. Rossi, A., e C. Aragona: Cristallizzazione solubititâ di mioglobine di specie diverse. Boll. Soc. ital. Biol. sper. 17, 206–208 (1942).Google Scholar
  478. Rossi, A., e L. Travia: Specifitate composition chimica di mioglobine di specie diverse. Boll. Soc. ital. Biol. sper. 16, 768–770 (1941).Google Scholar
  479. Rossifanelli, A.: Crystalline human myoglobin: some physicochemical properties and chemical composition. Science (Lancaster, Pa.) 108, 15–16 (1948).Google Scholar
  480. Rossifanelli, A.: Détermination spectrophotométrique simultanée de la myoglobine et de l’hémoglobine. Bull. Soc. Chim. biol. Paris 31, 457–460 (1949).Google Scholar
  481. Rossifanelli, A, D. Cavallini and C. de Marco: Fetal myoglobin. I. The crystallization of human and cow’s myoglobin extracted by the heart and fetal muscles. Arch. of Biochem. a. Biophysics 49 /50, 496–502 (1954).Google Scholar
  482. Roughton, F. J. W.: Diffusion and chemical reaction velocity in cylindrical and spherical systems of physiological interest. Proc. Roy. Soc. Lond. Ser. B 140, 203 (1952).Google Scholar
  483. Rubner, M.: Über den Einfluß der Körpergröße auf Stoff-und Kraftwechsel. Z. Biol. 19, 535 (1883).Google Scholar
  484. Rubner, M.: Die Quelle der tierischen Wärme. Z. Biol. 30, 73–142 (1894).Google Scholar
  485. Rubner, M.: Die Gesetze des Energieverbrauches bei der Ernährung. Leipzig 1902.Google Scholar
  486. Rubner, M.: Stoffwechsel bei verschiedenen Temperaturen. Beziehungen zur Größe und Oberfläche. In Handbuch der normalen und pathologischen Physiologie, Bd. V, S. 154–166. 1928.Google Scholar
  487. Ruff, S., H. Fedtke u. R. Ammon: Der Einfluß des Cytochroms c auf das anoxämische menschliche EKG. Z. Kreislaufforsch. 39, 146–150 (1950).PubMedGoogle Scholar
  488. Sacks, J., and F. M. Sinen: The effect of 2,4-dinitrophenol on the turnover of the acid-soluble phosphorus of rat diaphragm. Arch. of Biochem. a. Biophysics 39, 205–213 (1952).Google Scholar
  489. Salles, J. B. V., and S. Ochoa: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. II. Further study of the properties of the „malic“ enzyme of pigeon liver. J. of Biol. Chem. 187, 849–861 (1950).Google Scholar
  490. Sanadi, D. R., D. M. Gibson, P. Ayengar and L. Ouellet: Evidence for a new intermediate in the phosphorylation coupled to a-ketoglutarate oxidation. Biochim. et Biophysica Acta 13, 146 (1954).Google Scholar
  491. Sanadi, D. R., and J. W. Littlefield: Role of coenzyme A and DPN in the oxidation of a-ketoglutaric acid. Science (Lancaster, Pa.) 116, 327–328 (1952).PubMedGoogle Scholar
  492. Scraer, E.: Die neuere Entwicklung der Scaönbejnschen Untersuchungen über Oxydationsfermente. Z. Biol. 37, 320 (1899).Google Scholar
  493. Scharrer, E.: Capillares and mitochondria in Neuropil. J. Comp. Neur. 83, 237–243 (1945).PubMedGoogle Scholar
  494. Schlenk, F.: Die Codehydrogenasen I und II und zugehörige Apodehydrasen. In Bamann-Myrbäck, Bd. 3, S. 2295–2320. 1941.Google Scholar
  495. Schlenk, F.: Codehydrogenase I and II and Apoenzymes. In J. B. Sumner u. K. Myrbäck, The enzymes, Bd. II/1, S. 250–315. New York 1951.Google Scholar
  496. Schlenk, F.: Succinic Dehydrogenase. In J. B. Sumner u. K. Myrbäck, The enzymes, Bd. II/1, S.’316–328. New York 1951.Google Scholar
  497. Schmid, K.: Untersuchungen über das Wal-Myoglobin. Helvet. chim. Acta 32, 105 (1949).PubMedGoogle Scholar
  498. Schmid, K.: Zusammensetzung des Wal-Myoglobins. Helvet. chim. Acta 32, 1198 (1949).Google Scholar
  499. Schmidt, C. F.: Der Kreislauf des Gehirns. Pflügers Arch. 251, 571 (1949).Google Scholar
  500. Schmidt, C. F., S. S. Kety and H. H. Pennes: The gaseous metabolism of the brain of the monkey. Amer. J. Physiol. 143, 33–52 (1945).Google Scholar
  501. Schneider, W. C.: Distribution of enzymes within the cell. In H A Lardy, Respiratory Enzyms. Rev., S. 273–281. Minneapolis: Burgess Publ. Comp. 1949.Google Scholar
  502. Schneider, W. C.: Structural factors in metabolic regulations. Proc. 3. Internat. Congr. Biochem. Brüssel 1955, S. 305–315. 1956.Google Scholar
  503. Schneider, W. C., A. Claude and G. H. Hogeboom: The distribution of cytochrome c and succinoxidase activity in rat liver fractions. J. of Biol. Chem. 172, 451 (1948).Google Scholar
  504. Schneider, W. C., and G. H. Hogeboom: Intracellular distribution of enzymes. V. Further studies on the distribution of cytochrome c in rat liver homogenates. J. of Biol. Chem. 183, 123–128 (1950).Google Scholar
  505. Schneider, W. C., and V. R. Potter: The assay of animal tissues for respiratory enzymes. II. Succinic dehydrogenase and cytochromoxidase. J. of Biol. Chem. 149, 217 (1943).Google Scholar
  506. Schoenheimer, R.: The dynamic state of body constituents. Cambridge, Mass. 1946.Google Scholar
  507. Scholander, P. F., L. Irving and S. W. Grinnell: Aerobic and anaerobic changes in seal muscles during diving. J. of Biol. Chem. 142, 431–440 (1942).Google Scholar
  508. Schrecher, A. W., and A. Kornberg: Reversible enzymatic synthesis of flavon-adenine dinucleotide. J. of Biol. Chem. 182, 795 (1950).Google Scholar
  509. Schümmelfeder, N.: Untersuchungen zur histochemischen Indophenolblausynthese der Herzmuskelzellen und Leukozyten. Virchows Arch. 317, 707–769 (1950).Google Scholar
  510. Schultze, M. O.: The effect of deficiencies in copper and iron on the cytochrome oxidase of rat tissues. J. of Biol. Chem. 129, 729 (1939).Google Scholar
  511. Schulz, G. V.: Statistische Ableitung der Grenzgesetze für verdünnte Lösungen bei Verschiedenheit der Molvolumina. Zur statistischen Theorie makromolekularer Lösungen. Z. Naturforsch. 2a, 27–38 (1947).Google Scholar
  512. Schulz, G. V.: Mischungsentropie und. osmotischer Druck von Lösungen langgestreckter, starrer Teilchen. Zur statistischen Theorie makromolekularer Lösungen, II. Z. Naturforsch. 2a, 348–357 (1947).Google Scholar
  513. Schulz, G. V.: Mischungsentropie und osmotischer Druck von Lösungen lang-gestreckter Teilchen mit innerer Beweglichkeit. Zur statistischen Theorie makromolekularer Lösungen, III. Z. Naturforsch. 2a, 411–419 (1947)Google Scholar
  514. Schulz, G. V.:Über den makromolekularen Stoffwechsel der Organismen. Naturwiss. 37, 196–200 (1950).Google Scholar
  515. Schulz, G. V.:Über den makromolekularen Stoffwechsel der Organismen. Naturwiss. 37, 223–229 (1950).Google Scholar
  516. Schulz, G. V.: Energetische und statistische Voraussetzungen für die Synthese der Makromoleküle im Organismus. Z. Elektrochem. 55, 569–574 (1951).Google Scholar
  517. Scow, R. O., and J. H. Roe jr.: Effect of testosterone propionate on the weight and myoglobin content of striated muscles in gonadectomized guinea pigs. Amer. J. Physiol. 173, 22–28 (1953).PubMedGoogle Scholar
  518. Seligman, A. M., u. A. M. Rutenburg: The histochemical determination of succinic-dehydrogenase. Science (Lancaster, Pa.) 113, 317–320 (1951).Google Scholar
  519. Shacter, B.: Interrelations in respiratory, phosphorylative and mitotic activities of Ehrlich ascites tumor cells: Influence of dinitrophenol. Arch. of Biol. a. Biophysics 57, 387–400 (1955).Google Scholar
  520. Shelton, E., W. C. Schneider and M. Striebich: A method for counting mitochondria in tissue homogenates. Exper. Cell. Res. 4, 32–41 (1953).Google Scholar
  521. Shemin, D., and S. Kuinx: The mechanism of porphyrin formation. The formation of a succinyl intermediate from succinate. J. of Biol. Chem. 198, 827 (1952).Google Scholar
  522. Shemin, D., and J. Wittenberg: The mechanism of porphyrin formation. The role of the tricarboxylic acid cycle. J. of Biol. Chem. 192, 315–333 (1951).Google Scholar
  523. Shepherd, J. A., and G. Kalnitsky: Intracellular distribution of fumarase, aconitase and isocitric dehydrogenase in rabbit cerebral cortex. J. of Biol. Chem. 207, 605–611 (1954).Google Scholar
  524. Siedel, W.: Der Stoffwechsel der Porphyrine. In B. Flaschenträger u. E. Lehnartz, Physiologische Chemie, Bd. IIb, S. 996–1025. 1954.Google Scholar
  525. Singer, T. P., u. E. B. Kearney: Chemistry, metabolism and scope of action of the pyridine nucleotide coenzymes. Adv. Enzymol. 15, 79–139 (1954).Google Scholar
  526. Sjöstrand, T.: On the principles for the distribution of the blood in the peripheral vascular system. Skand. Arch. Physiol. (Berl. u. Lpz.) Suppl. 71 (1935).Google Scholar
  527. Sjöström, P.: Der Citratgehalt im Blutserum als Diagnosticum bei Krankheiten der Leber und Gallenwege. Eine methodologische, tierexperimentelle und klinische Studie. Acta chir. stand. (Stockh.) 79, Suppl. 49 (1937).Google Scholar
  528. Slater, E. C.: A factor in heart muscle required for the reduction of cytochrome c by cytochrome b. Nature (Lond.) 161, 405 (1948).Google Scholar
  529. Slater, E. C.: The measurement of the cytochrome oxidase activity of enzyme preparations. Biochemie. J. 44, 305–318 (1949).Google Scholar
  530. Slater, E. C.: A comparative study of the succinic dehydrogenase-cytochrome system in heart muscle and in kidney. Biochemie. J. 45, 1 (1949).Google Scholar
  531. Slater, E. C.: The dihydrocozymase-cytochrome e reductase activity of heart muscle preparation. Biochemie. J. 46, 484 (1950).Google Scholar
  532. Slater, E. C.: Structurally-bound enzymes. 4. Kolloquium Ges. Physiol.-Chem., Mosbach, S. 64–85. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  533. Slater, E. C.: Respiratory chain phosphorylation. Proc. 3. Internat. Congr. Biochem. 3, 264–278 (1956).Google Scholar
  534. Slater, E. C., and F. A. Holton: Oxydative phosphorylation coupled with the oxidation of a-ketoglutarate by heart-muscle sarcosomes. I. Kinetics of the oxidative phosphorylation reaction and adenine nucleotide specificity. Biochemie. J. 55, 530–544 (1953).Google Scholar
  535. Slater, E. C.: Oxidative phosphorylation coupled with the oxidation of a-ketoglutarate by heart muscle sarcosomes. II. Phosphorus: Oxygen-ratio. Biochemie. J. 56, 28–40 (1954).Google Scholar
  536. Slyke, D. D. van, C. P. Rhoads, A. Hiller and A. S. Alving: Relationships between urea excretion, renal blood flow, renal oxygen consumption and diuresis. The mechanism of urea excretion. Amer. J. Physiol. 109, 336 (1934).Google Scholar
  537. Slyke, D. D. van: The kinetics of hydrolytic enzymes and their bearing on methods for measuring enzyme activity. Adv. Enzymol. 2, 33 (1942).Google Scholar
  538. Smrrh, L.: Cytochrom a, a1, a2 und a1. In S. P. CoLOwICK u. N. O. KAPLAN, Methods in enzymology, Bd. II, S. 732. New York 1955.Google Scholar
  539. Smith, L., and H. Conrad: A study of the kinetics of the oxidation of cytochrom e by cytochrome-oxidase. Arch. of Biochem. a. Biophysics 63, 403 (1956).Google Scholar
  540. Sols, A.: The hexokinase activity of the intestinal mucosa. Biochim. et Biophysica Acta 19, 144–152 (1956).Google Scholar
  541. Spallanzani, L.: Mémoires sur la respiration. Genf: J. Senebier 1803.Google Scholar
  542. Stadie, W. C., and J. B. Marsh: The effect of cytochrome c upon the metabolism of rat tissues. J. Clin. Invest. 26, 899–902 (1947).PubMedGoogle Scholar
  543. Stannard, J. N.: Separation of the resting and activity oxygen consumption of frog muscle by means of sodium azide. Amer. J. Physiol. 126, 196 (1939).Google Scholar
  544. Stern, J.: Inhibitors and activators of brain hexokinase. Biochemic. J. 58, 526–542 (1954).Google Scholar
  545. Stern, K. G., and J. L. Melnicx: The photochemical spectrum of the PASTEUR-Enzyme in retina. J. of Biol. Chem. 189, 301–323 (1941).Google Scholar
  546. Stotz, E.: The estimation and distribution of cytochrome oxidase and cytochrome c in rat tissues. J. of Biol. Chem. 131, 555–565 (1939).Google Scholar
  547. Stotz, E.: Pyruvate metabolism. Adv. Enzymol. 5, 129 (1945).Google Scholar
  548. Stotz, E., A. E. Sidwell and T. R. Hogness: The spectrophotometric determination of the equilibrium in oxidation-reduction systems; the potential of cytochrome c. J. of Biol. Chem. 124, 733 (1938).Google Scholar
  549. Straub, F. B.: Isolation and properties of a flavoprotein from heart muscle tissue. Biochemic. J. 33, 787 (1939).Google Scholar
  550. Straub, F. B.: Crystalline lactic dehydrogenase from heart muscle. Biochemic. J. 34, 483–486 (1940).Google Scholar
  551. Sutherland, E. W., and C. F. Cori: Effect of hyperglycemic-glycogenolytic factor and epinephrine on liver phosphorylase. J. of Biol. Chem. 188, 531–543 (1951).Google Scholar
  552. Swenseid, M. E., R. H. Barnes, A. Hemmingway and A. O. Nier: The formation of acetone bodies from acetic acid. J. of Biol. Chem. 142, 47 (1942).Google Scholar
  553. Taggart, J. V., and R. P. Forster: Renal tubular transport: Effect of 2,4-dinitrophenol and related compounds on phenol red transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172 (1950).PubMedGoogle Scholar
  554. Terroine, E. F., et J. Roche: La respiration des tissus. I. Production calorique des homéothermes et intensité de la respiration in vitro des tissus homologues. Arch. internat. Physiol. 24, 356–399 (1925).Google Scholar
  555. Theorell, H.: Kristallinisches Myoglobin. I. Mitt. Kristallisieren und Reinigung des Myoglobins, sowie vorläufige Mitteilung über sein Molekulargewicht. Biochem. Z. 252, 1–7 (1932).Google Scholar
  556. Theorell, H.: Kristallinisches Myoglobin. II. Mitt. Sedimentationskonstante und Molekulargewicht des Myoglobins. Biochem. Z. 268, 46–54 (1934).Google Scholar
  557. Theorell, H.: Kristallinisches Myoglobin. III. Mitt. Die absolute Lichtabsorption von Oxy-Carboxy-, Meta-und reduziertem Myoglobin. Biochem. Z. 268, 55–63 (1934).Google Scholar
  558. Theorell, H.: Kristallinisches Myoglobin. IV. Mitt. Myoglobin im Gleichgewicht mit Sauerstoff und Kohlenoxyd. Biochem. Z. 268, 64–72 (1934).Google Scholar
  559. Theorell, H.: Kristallinisches Myoglobin. V. Mitt. Die Sauerstoffbindungskurve des Myoglobins. Biochem. Z. 268, 73–82 (1934).Google Scholar
  560. Theorell, H.: Reines Cytochrom c. II. Mitt. Darstellung, Eigenschaften, Ionenbeweglichkeit, Diffusion und Absorptionsspektrum des Cytochroms c. Biochem. Z. 285, 207 (1936)Google Scholar
  561. Theorell, H.: Die Alloxäzin- proteide (gelbe Fermente). In Bamann-Myrbäck, Die Methoden der Fermentforschung, Bd. 3, S. 2361–2384. 1941.Google Scholar
  562. Theorell, H.: The iron-containing enzymes. B. Catalases and peroxidases. “Hydroperoxidases.” In J. B. Sumner u. K. Myrbäck, The enzymes, Bd. 1, Teil 2, S. 397–427. New York 1951.Google Scholar
  563. Theorell, H.: Flavin-containing enzymes. In J. B. Sumner u. K. Myrbäck, The enzymes, Bd. II, S. 335–356. New York 1951.Google Scholar
  564. Theorell, H.: Nature and mode of action of oxidation enzymes. Science (Lancaster, Pa.) 124, 467 (1956).PubMedGoogle Scholar
  565. Theorell, H., and A. Akeson: Studies on the cytochrom c. I. Electrophoretic purification of cytochrom c and its aminoacid composition. J. Amer. Chem. Soc. 63, 1804 (1941).Google Scholar
  566. Theorell, H., and ch. De duve: Cristalline human myoglobin from heart muscle and urine. Arch. of Biol. 12, 113–124 (1947).Google Scholar
  567. Theorell, H. u. E. Ehrenberg: Spectrophotometric, magnetic and titrimetric studies on the heme-linked groups in myoglobin. Acta chem. scand. (Copenh.) 5, 823 (1951).Google Scholar
  568. Thews, G.: Über die mathematische Behandlung physiologischer Diffusionsprozesse in zylinderförmigen Objekten. Acta biotheoret. (Leiden) 10, 105–138 (1953).Google Scholar
  569. Thews, G.: Eine Methode zur mathematischen Behandlung der Sauerstoffdiffusion in hämoglobin-und myoglobinhaltigen Lösungen. Naturwiss. 43, 160–161 (1956).Google Scholar
  570. Thunberg, T.: Zur Kenntnis der Einwirkung tierischer Gewebe auf Methylenblau. Skand. Arch. Physiol. (Berl. u. Lpz.) 35, 165 (1917).Google Scholar
  571. Thunberg, T.: Die Dehydrasen. In Handbuch der Biochemie, Erg.-Werk, Bd. 1, S. 518 bis 537. 1933.Google Scholar
  572. Thunberg, T.: Biologische Aktivierung, Übertragung und endgültige Oxydation des Wasserstoffes. Erg. Physiol. 39, 76–116 (1937).Google Scholar
  573. Thunberg, T.: Die Enzyme der elementaren Atmung. In B. Flaschenträger u. E. Lehnartz, Physiologische Chemie, Bd. I, S. 1171–1245. Berlin- Göttingen-Heidelberg: Springer 1951.Google Scholar
  574. Toit, C. H. Du: The effects of thyroxine on phosphate metabolism. In Phosphorus metabolism, Bd. II, S. 597. Baltimore 1952.Google Scholar
  575. Tschirgi, R. D., R. W. Gerard, H. Jenerick, L. L. Boyarsky and J. Z. Hearon: Metabolism of the rat spinal cord functioning in isolation. Federat. Proc. 8, 166 (1949).Google Scholar
  576. Tsou, C. L.: The cytochrome system of adrenal medulla. Biochemic. J. 49, 658–662 (1951).Google Scholar
  577. Tyler, D. B.: Some factors affecting the action of 2,4-dinitrophenol on the oxygen uptake of excised rat brain. J. of Biol. Chem. 184, 711–718 (1950).Google Scholar
  578. Umbreit, W. W., H. Burris and J. F. Stauffer: Manometric techniques and related methods for the study of tissue metabolism, 2. Aufl. Minneapolis: Burgess Publ. Comp. 1949.Google Scholar
  579. Utter, F. M., and K. Kirahashi: Mechanism of action oxalacetic carboxylase from liver. J. Amer. Chem. Soc. 75, 758 (1953).Google Scholar
  580. Vanotti, A.: The adaptation of the cell to effort, altitude and to pathological oxygen deficiency. Schweiz. med. Wschr. 1946, 899.Google Scholar
  581. Vaughan, B. E., and N. Pace: Myoglobin content of rats at sea level and chronical by exposed to hypoxia. Federat. Proc. 14, 155 (1955).Google Scholar
  582. Vennesland, B., and F. H. Westreimer: Hydrogen transport and steric specifity on reactions catalyzed by pyridine nucleotide dehydrogenases. In D. Mcelroy and B. Glass, A symposion on the mechanism of enzym action, S. 357–388. Baltimore: John Hopkins Press 1954.Google Scholar
  583. Vernon, H. M.: The quantitative estimation of the indophenoloxidase of animal tissues. J. of Physiol. 42, 402–427 (1911).Google Scholar
  584. Vernon, H. M.: The indophenol-oxidase of mammalian and avian tissues. J. of Physiol. 43, 96–108 (1911/12).Google Scholar
  585. Vest, M., u. S. J. Wang: Veränderung des Cytochrom-c-Gehaltes der Muskulatur in großen Höhen. Helvet. physiol. Acta 8, 180–185 (1950).Google Scholar
  586. Wainio, W. W., and S. J. Cooperstein: Some controversial aspects of the mammalian cytochromes. Adv. Enzymol. 17, 329 (1956).Google Scholar
  587. Warburg, O.: Versuche an überlebendem Carzinomgewebe (Methoden). Biochem. Z. 142, 317 (1923).Google Scholar
  588. Warburg, O.: Über den Stoffwechsel der Tumoren. Berlin: Springer 1926.Google Scholar
  589. Warburg, O.: Wirkung des CO auf den Stoffwechsel der Hefe. Biochem. Z. 177, 471–486 (1926).Google Scholar
  590. Warburg, O.: Schwermetalle als Wirkungsgruppen von Fermenten. Berlin: Saenger 1946.Google Scholar
  591. Warburg, O.: Molekulargewicht des sauerstoffübertragenden Fermentes. Naturwiss. 33, 994 (1946).Google Scholar
  592. Warburg, O.: Wasserstoffübertragende Fermente. Berlin 1948.Google Scholar
  593. Warburg, O.: Über die Entstehung der Krebszellen. Naturwiss. 42, 401–406 (1955).Google Scholar
  594. Warburg, O.: On the origin of cancer cells. Science (Lancaster, Pa.) 123, 309 (1956).PubMedGoogle Scholar
  595. Warburg, O., u. W. Christian: Über Aktivierung der RosrxsoNschen Hexose-Mono-Phosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242, 206 (1931).Google Scholar
  596. Warburg, O.: Ein zweites sauerstoffübertragendes Ferment und sein Absorptionsspektrum. Naturwiss. 20, 688–980 (1932).Google Scholar
  597. Warburg, O.: Proteinteil des kohlenhydratoxydierenden Ferments der Gärung. Biochem. Z. 301, 221 (1939).Google Scholar
  598. Warburg, O.: Isolierung und Kristallisation des Proteins des oxydierenden Gärungsfermentes. Biochem. Z. 303, 40 (1939).Google Scholar
  599. Warburg, O., W. Christian u. A. Griebe: Wasserstoffübertragendes Co-Ferment, seine Zusammensetzung und Wirkungsweise. Biochem. Z. 282, 157 (1935).Google Scholar
  600. Warburg, O., u. F. Kubowitz: Atmung bei sehr kleinen Sauerstoffdrucken. Biochem. Z. 214, 5–18 (1929).Google Scholar
  601. Warburg, O., K. Posener u. E. Negelein: Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 152, 309–344 (1924).Google Scholar
  602. Warren, Ch. O.: The Pateur-Effect in bone marrow with particular reference to results obtained by different methods. J. Cellul. a. Comp. Physiol. 19, 193–209 (1942).Google Scholar
  603. Waters, W. A.: The chemistry of free Radicals. Sec. edition. Oxford 1948.Google Scholar
  604. Wearn, J. T., and L. G. Zschiesche: The extent of the capillary bed of the heart. J. of Exper. Med. 47, 273–291 (1928).Google Scholar
  605. Weilmalherbe, H., and A. D. Bone: Studies on hexokinase. I. The hexokinase activity of rat-brain extracts. Biochemie. J. 49, 339–347 (1951).Google Scholar
  606. Weilmalherbe, H.: Studies on hexokinase. II. An activator of hexokinase in erythrocytes. Biochemie. J. 49, 348–354 (1951).Google Scholar
  607. Weilmalherbe, H.: Studies on hexokinase. III. An activator of hexokinase in muscle extracts. Biochemie. J. 49, 355–361 (1951).Google Scholar
  608. Weilmalherbe, H.: Activators and inhibitors of hexokinase in human blood. J. Mental Sci. 97, 635–662 (1951).Google Scholar
  609. Weinland, E.: Beobachtungen über den Gaswechsel von Anodonta cygnaea L. Z. Biol. 69, 1–86 (1919).Google Scholar
  610. Westheimer, F. H.: “One electron” and “Two-electron” oxidation-reduction reactions in inorganic and organic chemistry. In: Mechanism of enzyme action, S. 321–356. Baltimore 1954.Google Scholar
  611. Weymouth, F. W., J. M. Crismon, V. E. Hall, H. S. Belding and J. Field: Total and tissue respiration in relation to body weight. A comparison of the kelp crab with other crustaceans and with mammals. Physiologic. Zool. 17, 50–71 (1944).Google Scholar
  612. Weymouth, F. W., J Field II and M. Kleiber: Relationship between body size and metabolism. Proc. Soc. Exper. Biol. a. Med. 49, 367–370 (1942).Google Scholar
  613. Whipple, G. H.: The hemoglobin of striated muscle. I. Variations due to age and exercise. Amer. J. Physiol. 76, 693–707 (1926).Google Scholar
  614. Whipple, G. H.: The hemoglobin of striated muscle. II. Variations due to anemia and paralysis. Amer. J. Physiol. 76, 708–714 (1926).Google Scholar
  615. Whipple, G. H., and F. S. Robscheit-Robbins: The hemoglobin of striated muscle. III. Muscle hemoglobin as a source of bile pigment. Amer. J. Physiol. 78, 675–682 (1926).Google Scholar
  616. Wieland, H., u. C. Rosenthal: Weitere Versuche über den biologischen Abbau der Essigsäure. Über den Mechanismus der Oxydationsvorgänge. III. Acetessigsäure und Zitronensäurecyclus. Liebigs Ann. 554, 241 (1943).Google Scholar
  617. Will, A.: Körpergröße, Körperzeiten und Energiebilanz. VI. Körpergröße und O2-Konsum bei Schaben und Asseln (Isopoden). Z. vgl. Physiol. 34, 20–25 (1952).Google Scholar
  618. Williams, R. J. P.: Models for metallo-enzyms. Nature (Lond.) 177, 304–307 (1956).Google Scholar
  619. Wilson, P. W.: Kinetics and mechanisms of enzyme reactions. In H. A. Lardy, Respiratory enzymes, S. 16–57. Minneapolis: Burgess Publ. Comp. 1950.Google Scholar
  620. Winnler, F.: Der Nachweis von Oxydase in den Leukozyten mittels der Dimethylp-Phenyldiamin-a-Naphto]-Reaktion. Fol. haemat. (Lpz.) 4, 323 (1907).Google Scholar
  621. Wtterstein, H.: Die chemische Steuerung der Atmung. Erg. Physiol. 48, 328–528 (1955).Google Scholar
  622. Wrnzleb, R. J.: The respiration of baker’s yeast at low oxygen tension. J. Cellul. a. Comp. Physiol. 17, 263–276 (1941).Google Scholar
  623. Wood, H. G.: Significance of alternate pathways in the metabolism of glucose. Physiologic. Rev. 35, 841–859 (1955).Google Scholar
  624. Wood, H. G., and C. H. Werkman: The fixation of CO, by cell suspensions of proprioni bacterium pentosaceum. Biochemic. J. 34, 7–14 (1940).Google Scholar
  625. Woodruff, W. W., and G. H. Whipple: Muscle hemoglobin in human autopsy material. Amer. J. Path. 4, 75–86 (1928).PubMedGoogle Scholar
  626. Wyman jr., J.: Heme proteins. Adv. Protein. Chem. 4, 407–531 (1948).PubMedGoogle Scholar
  627. Yuile, Ch. L., and W. F. Clark: Myohemoglobinuria. A study of renal clearance of myohemoglobin in dogs. J. of Exper. Med. 74, 187–196 (1941).Google Scholar
  628. Yume, Ch. L., J. F. Steinmann, P. F. Hahn and W. F. Clark: The tubular factor in renal hemoglobin excretion. J. of Exper. Med. 74, 197–202 (1941).Google Scholar
  629. Zöllner, N., u. E. Rothemund: Beobachtungen über die Messung der Aktivität der Bernsteinsäuredehydrase. Z. physiol. Chem. 298, 97–109 (1954).Google Scholar
  630. Zuntz, N.: Physiologie der Blutgase und des respiratorischen Stoffwechsels. In L. Hermanns Handbuch der Physiologie, Bd. IV, S. 1–162. Leipzig 1882.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1957

Authors and Affiliations

  • E. Opitz
    • 1
  • D. Lübbers
    • 1
  1. 1.KielDeutschland

Personalised recommendations