Das Myokard

  • F. H. Degenring

Zusammenfassung

Die grobanatomischen Muskelstrukturen in den Vorhöfen und den Kammern des Herzens entsprechen durchaus nicht einem ringförmigen Hohlmuskel, dessen Aktionen überall gleichzeitig ablaufen. Vielmehr sind mehrere, anatomisch in ihrer Richtung divergierende, funktionell und im zeitlichen Ablauf jedoch synergetisch wirkende Herzmuskelschichten zu unterscheiden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Der Herzmuskelaufbau

  1. Böhme, W.: Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn. Physiol. 38, 251 (1936).Google Scholar
  2. Gauer, O. H.: Kreislauf des Blutes. In Physiologie Bd. 3, Herz und Kreislauf (Hrsg. O. H. Gauer, K. Kramer, R. Jung). München-Berlin-Wien: Urban und Schwarzenberg 1972.Google Scholar
  3. Robb, J. S., Robb, R. C.: Normal heart. Anatomy and physiology of the structural units. Amer. Heart J. 23, 455 (1942).CrossRefGoogle Scholar
  4. Rushmer, R. E.: Cardiovascular dynamics. Philadelphia: Saunders 1961.Google Scholar

Das Reizleitungssystem

  1. Doerr, W.: Organpathologie, Bd. I, S. 71. Stuttgart: Thieme 1974.Google Scholar
  2. Hoff, E. C., Green, H. D.: Cardiovascular reactions induced by electrical stimulation of the cerebral cortex. Amer. J. Physiol. 117, 411 (1936).Google Scholar
  3. Mitchell, G. H. G: The innervation of the heart. Brit. Heart J. 15, 159(1953).PubMedCrossRefGoogle Scholar
  4. Titus, J. L., Daugherty, G. W., Edwards, J. E.: Anatomy of the normal human atrioventricular conduction system. Amer. J. Anat. 113, 407(1963).Google Scholar
  5. Truex, R. C.: Anatomy of the spezialized tissues of the heart. In: Cardiac Arrhythmias (Eds. L. S. Dreifus, W. Likoff). New York-London: Grune & Stratton 1973.Google Scholar

Feingewebliche Strukturen

  1. Bennett, H. S.: Structure of the muscle cells. Rev. med. Physics 31, 349 (1959).CrossRefGoogle Scholar
  2. Braunwald, E., Ross, J., jr., Sonnenblick, E. H.: Mechanisms of contraction of the normal and failing heart. Boston: Little Brown & Co. 1967.Google Scholar
  3. Doerr, W.: Organpathologie, Bd. I, S. 3. Stuttgart: Thieme 1974.Google Scholar
  4. Huxley, H. E.: The contractile structure of cardiac and skeletal muscle. Circulation 24, 328 (1961).PubMedGoogle Scholar
  5. Katz, A. M.: Contractile proteins of the heart. Physiol. Rev. 50, 63 (1970).PubMedGoogle Scholar
  6. Szent-Györgyi, A. G.: Muscle as a Tissue. New York: McGraw Hill 1968.Google Scholar

Die Herzmechanik

  1. Berne, R. M., Levy, M. N.: Cardiovascular physiology. St. Louis: Mosby 1967.Google Scholar
  2. Böhme, W.: Über den aktiven Anteil des Herzens an der Förderung des Venenblutes. Ergebn. Physiol. 38, 251 (1936).Google Scholar
  3. Burton, A. C.: Physiology and Biophysics of the Circulation. Chicago: Year book Med. Publ. 1972.Google Scholar
  4. Rein, H., Schneider, M.: Einführung in die Physiologie des Menschen. Berlin-Göttingen-Heidelberg-New York: Springer 1964.Google Scholar
  5. Rushmer, R. E.: Cardiovascular Dynamics. Philadelphia: Saunders 1961.Google Scholar

Die Kontraktionskraft des Herzens

  1. Abbott, B. C., Mommaerts, W. F. H. M.: A study of inotropic mechanisms in the papillary muscle preparation. J. gen. Physiol. 42, 533 (1959).PubMedCrossRefGoogle Scholar
  2. Frank, O.: Zur Dynamik des Herzmuskels. Z. Biol. 32, 370 (1895).Google Scholar
  3. Hill, A. V.: The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. B 126, 136 (1938).CrossRefGoogle Scholar
  4. Mason, D. T., Braunwald, E., Covell, J. W., Sonnenblick, E. H., Ross, J., jr.: Assessment of cardiac contractility. The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 44, 47 (1971).PubMedGoogle Scholar
  5. Parmley, W. W., Chuck, L., Sonnenblick, E. H.: Relation of Vmax to different models of cardiac muscle. Circulat. Res. 30, 34 (1965).Google Scholar
  6. Sonnenblick, E. H.: Implications of muscle mechanics in the heart. Fed. Proc. 21, 975(1962).PubMedGoogle Scholar
  7. Starling, E. H.: Linacre lecture in the law of the heart. London: Longmans & Green 1918.Google Scholar
  8. Straub, H.: Zur Dynamik des Herzens. Die Arbeitsweise des Herzens in ihrer Abhängigkeit von Spannung und Länge unter verschiedenen Arbeitsbedingungen. In: Handb. norm. pathol. Physiol., Bd. 7, S. 1. Berlin: Springer 1926.Google Scholar
  9. Veragut, U. P., Krayenbühl, H. P.: Estimation and quantification of myocardial contractility in the closed chest dog. Cardiologia (Basel) 47, 96(1965).Google Scholar

Molekulare Kontraktionsbasis

  1. Beeler, G. W., Jr., Reuter, H.: Membrane calcium current in ventricular myocardial fibres. J. Physiol. (Lond.) 207, 191 (1970).Google Scholar
  2. Ebashi, S., Endo, M.: Calcium ion and muscle contraction. In: Progress in Biophysics and Molecular Biology (J. A. V. Butler, P. Noble, Eds.). New York: Pergamon Press 1968.Google Scholar
  3. Gergely, J.: Some aspects of the role of the sarcoplasmic reticulum ana the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circulat. Res., Suppl. III, 34–35, 74 (1974).Google Scholar
  4. Goody, R. S., Mannherz, H. G.: The molecular basis of contractility, part II. Basic Res. Cardiology 69, 204 (1974).CrossRefGoogle Scholar
  5. Hanson, J., Lowy, J.: Molecular basis of contractility in muscle. Brit. med. Bull. 21, 264(1965).PubMedGoogle Scholar
  6. Huxley, A. F., Niedergerke, R.: Structural changes in muscle during contraction. Interference microscopy of living fibres. Nature (Lond.) 173, 971 (1954).CrossRefGoogle Scholar
  7. Huxley, H. E., Hanson, J.,: Changes in the cross striations of muscle during contraction and stretch and their structural interpretation. Nature (Lond.) 173, 973 (1954).CrossRefGoogle Scholar
  8. Pool, P. E., Sonnenblick, E. H.: The mechanochemistry of cardiac muscle. I. The isometric contraction. J. gen. Physiol. 50, 951 (1967).PubMedCrossRefGoogle Scholar
  9. Puff., A.: Systemumstellungen der Muskelfasern im Kontraktionsvorgang an der rechten Herzkammer. Zeitlupenstudien bei 1000 B/sec. Verh. Anat. Ges., 55. Versammlung 1958, S. 355. Jena: VEB Gustav Fischer 1959.Google Scholar
  10. Puff, A.: Die Morphologie des Bewegungsablaufes der Herzkammern. Anat. Anz. 108, 342 (1960).PubMedGoogle Scholar
  11. Reedy, N. K., Holmes, K. C., Tregear, R. C.: Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature (Lond.) 207, 1276 (1965).CrossRefGoogle Scholar

Elektrolyttransport

  1. Carsten, M. E.: The cardiac calcium pump. Proc. nat. Acad. Sci. (Wash.) 52, 1456(1964).CrossRefGoogle Scholar
  2. Fleckenstein, A.: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions. In: Calcium ana the Heart (Eds. P. Harris, L. H. Opie), New York: Academic Press 1971.Google Scholar
  3. Gergely, J.: Some aspects of the role of the sarcoplasmic reticulum ana the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circulat. Res., Suppl. III, 3435, 74 (1974).Google Scholar
  4. Gertz, E. W., Hess, M. L., Lain, R. F., Briggs, F. N.: Activity of the vesicular calcium pump in the spontaneously failing heart-lung preparation. Circulat. Res. 20, 477 (1967).PubMedGoogle Scholar
  5. Harigaya, S., Schwartz, A.: Rate of calcium binding and uptake in normal animal and failing human cardiac muscle. Circulat. Res. 25, 781 (1969).PubMedGoogle Scholar
  6. Hasselbach, W.: Relaxation and sarcotubular calcium pump. Fed. Proc. 23, 909(1964).PubMedGoogle Scholar
  7. Hasselbach, W., Makinose, M.: ATP and active transport. Biochem. biophys. Res. Commun. 7, 132 (1962).PubMedCrossRefGoogle Scholar
  8. Koch-Weser, J., Blinks, J. R: The influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15, 601 (1963).PubMedGoogle Scholar
  9. Krebs, R., Klaus, W., Menz, C.: Kompartment-Analyse des Ca-Umsatzes in isolierten Meerschweincnenherzen. Naunyn-Schmiedebergs Arch. Pharmakol. 266, 377 (1970).PubMedCrossRefGoogle Scholar
  10. Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev. 48, 708 (1968).PubMedGoogle Scholar
  11. Lehninger, A. L.: Ca2+ -transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Circulat. Res., Suppl. III, 34–35, 83(1974).Google Scholar
  12. Nayler, W. G.: Calcium exchange in cardiac muscle; a basic mechanism of drug action. Amer. Heart J. 73, 379 (1967).PubMedCrossRefGoogle Scholar
  13. Reuter, H., Scholz, H.: Über den Einfluß der extrazellulären Ca-Konzentration auf Membranpotential und Kontraktion isolierter Herzpräparate bei graduierter Depolarisation. Pflügers Arch. ges. Physiol. 300, 87(1968).CrossRefGoogle Scholar
  14. Schwartz, A.: Calcium and the sarcoplasmic reticulum. In: Calcium and the Heart (Eds. P. Harris, L. H. Opie). New York: Academic Press 1971.Google Scholar
  15. Skou, J. Ch.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta (Amst.) 23, 394(1957).CrossRefGoogle Scholar
  16. Trautwein, W.: Elektrophysiologie der Herzmuskelfaser. Ergebn. Physiol. 51, 131 (1961).PubMedGoogle Scholar
  17. Weidmann, S.: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115, 227 (1951).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • F. H. Degenring
    • 1
  1. 1.WeinheimDeutschland

Personalised recommendations