Skip to main content

Collisional Kinetic Models of Multispecies Plasmas in Nonuniform Magnetic Fields

  • Chapter
Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Part of the book series: Springer Series in Computational Physics ((SCIENTCOMP))

  • 187 Accesses

Abstract

It is generally the case in magnetic fusion devices that the magnetic field is nonuniform, but varies weakly on the scale of the gyro-motion, the fastest nearly recurrent motion of the charged particles comprising the plasma. However, motion along the direction of the field inexorably carries the particle through finite variations of the field, and the environment in which the charged particle is immersed as it executes its motion may vary significantly with these field variations. It is often necessary to consider this nonuniformity in order to involve salient features distinctive of a particular device in phenomena in which they play a significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Abramowitz and I. Stegun (ed.), Handbook of Mathematical Functions, National Bureau of Standards Applied Mathematics Series, Number 55, US Government Printing Office, Washington, DC, 446 (1968).

    Google Scholar 

  • D. B. Batchelor and R. C. Goldfinger, Rays: A Geometrical Optics Code for EBT, ORNL/TM-6844 (1982).

    Google Scholar 

  • H. L. Berk, Plasma Phys., 20, 205 (1978).

    Article  ADS  Google Scholar 

  • I. B. Bernstein, Phys. Rev., 109, 10 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • I. B. Bernstein and D. C. Baxter, Phys. Fluids, 24, 108 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • D. T. Blackfield and J. E. Scharer, Nucl. Fusion, 22, 255 (1982).

    Article  Google Scholar 

  • K. H. Burrell, J. Comput. Phys., 27, 98 (1978).

    Article  ADS  Google Scholar 

  • B. I. Cohen, R. H. Cohen, and T. D. Ronglien,Phys. Fluids, 26, 808 (1983).

    Article  ADS  MATH  Google Scholar 

  • P. L. Colestock and R. J. Kashuba, Nucl. Fusion, 23, 763 (1983).

    Article  Google Scholar 

  • J. W. Connor, R. C. Grimm, R. J. Hastie, and P. M. Keeping, Nucl. Fusion, 13, 211 (1973).

    Article  Google Scholar 

  • B. Coppi and D. J. Sigmar, Phys. Fluids, 16, 1174 (1973).

    Article  ADS  Google Scholar 

  • J. G. Cordey, K. D. Marx, M. G. McCoy, A. A. Minn, and M. E. Rensink, J. Comput. Phys., 28, 115 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  • T. A. Cutler, L. D. Pearlstein, and M. E. Rensink, Computation of the Bounce Average Code, UCRL-52233, LLL. (1977).

    Book  Google Scholar 

  • H. Dreicer, Phys. Rev., 115, 23 (1959); and 117, 329 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  • N. J. Fisch, PPPL-1684 and PPPL-1692 (1980).

    Google Scholar 

  • N. J. Fisch and A. Bers, Third Topical Meeting on RF Plasma Heating, Caltech (1978).

    Google Scholar 

  • N. J. Fisch and C. F. Karney, Phys. Fluids, 24, 27 (1981).

    Article  ADS  MATH  Google Scholar 

  • R. J. Goldston, Ph.D. Thesis, Princeton University, Princeton, NJ (1977).

    Google Scholar 

  • G. W. Hammett, J. C. Hosea, R. J. Goldston, D. Q. Hwang, R. Kaita, D. M. Manos, S. Kilpatrick, and J. R. Wilson, 25 Conference of the American Physical Society Division of Plasma Physics, Los Angeles (1983).

    Google Scholar 

  • R. W. Harvey, K. D. Marx, and M. G. McCoy, Nucl. Fusion, 21, 153 (1981).

    Article  ADS  Google Scholar 

  • F. L. Hinton and R. D. Hazeltine, Phys. Fluids, 48, 239 (1976).

    MathSciNet  Google Scholar 

  • B. H. Hui, N. K. Winsor, and B. Coppi, Phys. Fluids, 20, 1275 (1977).

    Article  ADS  Google Scholar 

  • D. Q. Hwang, C. F. Karney, J. C. Hosea, J. M. Hovey, C. E. Singer, and J. R. Wilson, PPPL 1990 (1983).

    Google Scholar 

  • R. Kaita, G. J. Goldston, P. Beiersdorfer, D. L. Herndon, J. Hosea, D. Q. Hwang, F. Jobes, D. D. Meyerhofer, and J. R. Wilson, Nucl. Fusion, 23, 1089 (1983).

    Article  Google Scholar 

  • A. N. Kaufman, Phys. Fluids, 15, 1063 (1972).

    Article  ADS  Google Scholar 

  • C. F. Kennel and F. Englemann, Phys. Fluids, 9, 2377 (1966).

    Article  ADS  Google Scholar 

  • G. D. Kerbel and M. G. McCoy, Comput. Phys. Commun., to be published, May 1986.

    Google Scholar 

  • J. Kesner, Nucl. Fusion, 18, 781 (1978).

    Article  ADS  Google Scholar 

  • M. Kruskal, J. Math. Phys., 3, 806 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Y. Matsuda and J. J. Stewart. A Relativistic Multiregion Bounce-Averaged Fokker-Planck Code For Mirror Plasmas, UCRL-92313, (1985).

    Google Scholar 

  • M. E. Mauel, Ph.D. Thesis, MIT, Cambridge, MA (1982); also PFC/RR-82–29 (1982).

    Google Scholar 

  • F. W. Perkins, E. J. Valeo, D. C. Eder, D. Q. Hwang, A. Kritz, C. K. Phillips, Y. C. Sun, D. G. Swanson, G. D. Kerbel, M. G. McCoy, J. Killeen, R. W. Harvey, S. C. Chiu, K. Hizanidis, V. Krapchev, D. Hewett, and A. Bers, Plasma Physics and Controlled Nuclear Fusion Research, 1984, 1, 513 (1985).

    Google Scholar 

  • R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, ed., Interscience, New York, 1967.

    MATH  Google Scholar 

  • M. M. Rosenbluth, R. D. Hazeltine, and F. L. Hinton, Phys. Fluids, 15, 116 (1972).

    Article  ADS  Google Scholar 

  • M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phys. Rev., 107, 1 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • J. E. Scharer, J. B. Beyer, D. T. Blackfield, and T. K. Mau, Nucl. Fusion, 19, 1171 (1979).

    Article  ADS  Google Scholar 

  • L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York, 1967.

    Google Scholar 

  • L. Spitzer and R. Härm, Phys. Rev., 89, 977 (1953).

    Article  ADS  MATH  Google Scholar 

  • T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York, 1962.

    MATH  Google Scholar 

  • T. H. Stix, Nucl. Fusion, 15, 737 (1975).

    Article  ADS  Google Scholar 

  • R. E. Stockdale, private communication (1983).

    Google Scholar 

  • D. G. Swanson, Nucl. Fusion, 23, 949 (1980).

    Article  ADS  Google Scholar 

  • D. G. Swanson, Phys. Fluids, 24, 2038 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Killeen, J., Kerbel, G.D., McCoy, M.G., Mirin, A.A. (1986). Collisional Kinetic Models of Multispecies Plasmas in Nonuniform Magnetic Fields. In: Computational Methods for Kinetic Models of Magnetically Confined Plasmas. Springer Series in Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85954-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85954-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85956-4

  • Online ISBN: 978-3-642-85954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics