Spectral Methods

  • C. A. J. Fletcher
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


In chapter 2 it was indicated that modern computational Galerkin methods have developed in two directions. The first direction leads to finite-element methods, which were discussed in chapters 3 and 4. Finite-element methods are characterized by the use of local, low-order polynomials as test and trial functions in subdomains called finite elements.


Reynolds Number Fourier Series Galerkin Method Spectral Method Chebyshev Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bourke, W. Mon. Weather Rev. 100, 683–689 (1972).ADSCrossRefGoogle Scholar
  2. Bourke, W. Mon. Weather Rev. 102, 688–701 (1974).ADSCrossRefGoogle Scholar
  3. Bourke, W. McAvaney, B., Puri, K., and Thurling, R., Meth. Comp. Phys. 17, 267–325 (1977).MathSciNetGoogle Scholar
  4. Brigham, E. O. The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ (1974).MATHGoogle Scholar
  5. Cooley, J. W., and Tukey, J. W. Math. Comp. 19, 297–301 (1965).MathSciNetMATHCrossRefGoogle Scholar
  6. Dahlquist, G., Bjorck, A., and Anderson, N. Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ (1974).Google Scholar
  7. Dorodnitsyn, A. A. Adv. in Aero. Sci.,Vol. 3, Pergamon Press, New York (1960).Google Scholar
  8. Fleet, R. W., and Fletcher, C. A. J. “A Comparison of the Finite Element and Spectral Methods for the Dorodnitsyn Boundary Formulation”, in Fourth International Conference in Australia on Finite Element Methods, Univ. of Melbourne, August 1982, pp. 59–63 (1982).Google Scholar
  9. Fletcher, C. A. J. AIAA J. 13, 1073–1078 (1975).ADSCrossRefGoogle Scholar
  10. Fletcher, C. A. J. “Burgers’ Equation: A Model for All Reasons”, in Numerical Solution of Partial Differential Equations (ed. J. Noye ), pp. 139–225, North-Holland (1982).Google Scholar
  11. Fletcher, C. A. J., and Holt, M. J. Comp. Phys. 18, 154–164 (1975).ADSMATHCrossRefGoogle Scholar
  12. Fletcher, C. A. J., and Holt, M. J. Fluid Mech. 74, 561–591 (1976).ADSMATHCrossRefGoogle Scholar
  13. Fornberg, B. and Whitham, G. B. Proc. Roy. Soc. A 289 373–404 (1978).Google Scholar
  14. Gottlieb, D., and Orszag, S. A. Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, Philadelphia (1977).Google Scholar
  15. Gottlieb, D. and Turkel, E. Stud. Appl. Math. 63 67–86 (1980).Google Scholar
  16. Haidvogel, D. B. Robinson, A. R., and Schulman, E. E. J. Comp. Phys. 34 1–53 (1980).Google Scholar
  17. Hamming, R. W. Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 2nd Edn. (1973).Google Scholar
  18. Herring, J. R., Orszag, S. A., Kraichnan, R. H., and Fox, D. G. J. Fluid Mech. 66, 417–444 (1974).ADSMATHCrossRefGoogle Scholar
  19. Holt, M. Numerical Methods in Fluid Dynamics, Springer-Verlag, Berlin (1977).MATHGoogle Scholar
  20. Isaacson, E., and Keller, H. B. Analysis of Numerical Methods, Wiley, New York (1966).MATHGoogle Scholar
  21. Lanczos, C. Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ (1956).Google Scholar
  22. Lorenz, E. N. Tellus 12, 243–254 (1960).ADSCrossRefGoogle Scholar
  23. Lubard, S., and Helliwell, W. S. AIAA J. 12, 965–974 (1974).ADSMATHCrossRefGoogle Scholar
  24. Machenhauer, B., and Daley, R. A Baroclinic Primitive Equation Model with Spectral Representation in Three Dimensions, Rep. 4, Inst. Theor. Met., Köbenhavns Universitet, Denmark (1972).Google Scholar
  25. Majda, A., McDonough, J., and Osher, S. Math. Comp. 32, 1041–1081 (1978).MathSciNetMATHCrossRefGoogle Scholar
  26. Majda, A., and Osher, S. Comm. Pure Appl. Math. 30, 671–705 (1977).MathSciNetMATHCrossRefGoogle Scholar
  27. McCrory, R. L., and Orszag, S. A. J. Comp. Phys. 37, 93–112 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  28. Metcalfe, R. W., and Riley, J. J. Lecture Notes in Physics, Vol. 141, pp. 279–284, Springer-Verlag, Berlin (1981).Google Scholar
  29. Moin, P., and Kim, J. J. Comp. Phys. 35, 381–392 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  30. Morchoisne, Y. La Recherche Aerospatiale 1979–5, 11–31 (1979).MathSciNetGoogle Scholar
  31. Newell, R. W., Kidson, J. W., Vincent, D. G., and Boer, G. J. The General Circulation of the Tropical Atmosphere, Vol. 1, pp. 17–130, MIT Press, Cambridge, MA (1972).Google Scholar
  32. Orszag, S. A. Physics of Fluids 12, Supplement II, 250–257 (1969).Google Scholar
  33. Orszag, S. A. J. Atmos. Sci. 27, 890–895 (1970).ADSCrossRefGoogle Scholar
  34. Orszag, S. A. J. Fluid Mech. 49, 75–112 (1971a).MathSciNetADSMATHCrossRefGoogle Scholar
  35. Orszag, S. A. J. Fluid Mech. 50, 689–703 (1971b).ADSMATHCrossRefGoogle Scholar
  36. Orszag, S. A. Stud. Appl. Math. 50, 293–327 (1971c).MathSciNetMATHGoogle Scholar
  37. Orszag, S. A. Stud. Appl. Math. 51, 253–259 (1972).MATHGoogle Scholar
  38. Orszag, S. A. Lecture Notes in Physics, Vol. 59, pp. 32–51, Springer-Verlag, Berlin (1976).Google Scholar
  39. Orszag, S. A. “Numerical Simulation of Turbulent Flows”, in Handbook of Turbulence (eds. W. Frost and T. H. Moulden ), pp. 281–313, Plenum Press, New York, (1977).CrossRefGoogle Scholar
  40. Orszag, S. A. J. Comp. Phys. 37, 70–92 (1980).MathSciNetADSMATHCrossRefGoogle Scholar
  41. Orszag, S. A., and Kells, L. C. J. Fluid Mech. 96, 159–205 (1980).ADSMATHCrossRefGoogle Scholar
  42. Orszag, S. A., and Kruskal, M. D. Physics of Fluids 11, 43–60 (1968).ADSMATHCrossRefGoogle Scholar
  43. Orszag, S. A., and Patterson, G. S. Phys. Rev. Lett. 28, 76–79 (1972).ADSCrossRefGoogle Scholar
  44. Pasciak, J. E. Math. Comp. 35, 1081–1092 (1980).MathSciNetMATHGoogle Scholar
  45. Patera, A. T., and Orszag, S. A. Lecture Notes in Physics, Vol. 141, pp. 329–335, Springer-Verlag, Berlin (1981).Google Scholar
  46. Platzman, G. W., J. Meteorol. 17, 635–644 (1960).MathSciNetCrossRefGoogle Scholar
  47. Puri, K., Mon. Weath. Rev. 109, 286–305 (1981).ADSCrossRefGoogle Scholar
  48. Puri, K. Private communication (1982).Google Scholar
  49. Schutz, C., and Gates, W. L. Global Climatic Data for Surface, 800 mb: January, Rep. R-915-ARPA, Rand Corp., Santa Monica, CA (1971).Google Scholar
  50. Silberman, I. S. J. Meteorol. 11, 27–34 (1954).CrossRefGoogle Scholar
  51. Taylor, T. D., and Murdock, J. W. Comp. and Fluids 9, 255–263 (1981).ADSMATHCrossRefGoogle Scholar
  52. Tracy, R. R. Calif. Inst. Techn., Memo No. 69 (1963).Google Scholar
  53. Yeung, W.-S., and Yang, R.-J. “Application of the Method of Integral Relations to the Calculation of Two-dimensional Incompressible Turbulent Boundary Layers”, J. App. Mech. 48, 701–706 (1981).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • C. A. J. Fletcher
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of SydneyAustralia

Personalised recommendations