Protein conformational analysis and online sequence searching: an application to drug research

  • Anish Mohindru
  • Barbara J. B. Ambrose
  • James F. Corning
Conference paper


Protein structure is generally described at a primary or three-dimensional level. The primary structure is the amino acid sequence of the protein, the order that the constituent amino acids occur in a chain. The amino acid sequence of a protein is determined precisely by genes and is the key to understanding the biochemistry of these macromolecules. The three-dimensional structure or the conformation of proteins is determined variously by hydrophobic interactions among the amino acids and other intramolecular forces, such as van der Waals interactions. These interactions affect the secondary, tertiary, and quaternary structure. The pattern of folding of a peptide chain into α helix or β-sheet is referred to as the secondary structure. This is determined by the interaction of closely grouped amino acids. Further folding, which involves interactions between groups distant in the protein, determines the tertiary structure. Finally, the aggregation of monomelic protein subunits into oligomers yields the quaternary structure.


Atrial Naturietic Peptide Atrial Natriuretic Factor Registry File Sequence Record Wild Card 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfinsen, C. B, Haber, E., Sela, M., and White, F. H., Jr. (1961) Proc. Natl Acad. Sci. USA, 47, 1309CrossRefGoogle Scholar
  2. Bovy, P. H. (1990) Med. Res. Rev., 10, 115–142CrossRefGoogle Scholar
  3. Burks, C., Fickett, J. W., Gaod, W. B., Kanehisa, M., Lewitter, F. I., Rindone, W. P., Swindell, C. D., Tung, C.-S. and Bilofsky, H. B. (1985) Comp. Appl. Biosci., 1, 225–233Google Scholar
  4. Cohen, F. E., Gregoret, L., Presnell, S. R., and Kuntz, I. D. (1989) Prog. Clin. Biol. Res., 289, 75–85Google Scholar
  5. Chou, P. Y. and Fasman, G. D. (1978) Adv. Enzymol. Relat. Areas Mol. Biol., 47, 45–148Google Scholar
  6. Devereux, J., Haeberli, P., Smithies, O. (1984) Nucleic Acids Research, 12, 387–395CrossRefGoogle Scholar
  7. Gamier, J. O., Osguthorpe, D. J., and Robson, B. (1978) J. Mol. Biol., 120, 97–120CrossRefGoogle Scholar
  8. Gribskov, M. (1982) Nucleic Acids Research, 10, 327–334Google Scholar
  9. Jameson, B. A. and Wolf, H. (1988) Comput. Appl. Biosci., 4, 181–187Google Scholar
  10. Kahn, P. and Cameron, G. (1990) Methods Enzymol, 183, 23–31CrossRefGoogle Scholar
  11. Kyte, J. and Doolittle, R. F. (1982) J. Mol Biol, 157, 105–132CrossRefGoogle Scholar
  12. Letwitter, F. I. (1987) Dev. Ind. Microbiol, 27, 45–49Google Scholar
  13. Martin, W. J. (1989) Genome, 31, 1073–1080CrossRefGoogle Scholar
  14. Mohindru, A., Hackett, W. F., Haines, R. C., and Corning, J. F. in preparationGoogle Scholar
  15. Scheraga, H. A. (1989) Prog. Clin. Biol. Res., 289, 3–18Google Scholar
  16. Smith, T. F. and Waterman, M. S. (1981) Adv. Applied Math., 2, 482–489MathSciNetMATHCrossRefGoogle Scholar
  17. Vesely, D. L., Norris, J. S., Walters, J. M., Jespersen, R. R., and Baeyens, D. A. (1987) Biochem. Biophys. Res. Commun., 148, 1540–1548CrossRefGoogle Scholar
  18. Wilbur, W. J. and Lipman, D. J. (1983) Proc. Natl. Acad. Sci. USA, 80, 726–730CrossRefGoogle Scholar
  19. Wolf, H., Modrow, S., Motz, M., Jameson, B. A., Herman, G. and Fortsch, B. (1988) Comput. Appl Biosci., 4, 187–191Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Anish Mohindru
    • 1
  • Barbara J. B. Ambrose
    • 1
  • James F. Corning
    • 1
  1. 1.Chemical Abstracts ServiceColumbusUSA

Personalised recommendations