Calcium Antagonists and Experimental Focal Cerebral Ischemia

  • J. McCulloch
  • D. I. Graham
  • A. M. Harper
  • G. M. Teasdale
Conference paper


Calcium channel blockers have the potential to attenuate ischaemic brain damage via a number of distinct mechanisms. Voltage-dependent Ca2+ channels are present on cerebrovascular smooth muscle and their blockade results in relaxation. Calcium channel blockers are thus capable of improving cerebral tissue perfusion in ischaemic tissue, to levels above those associated with neuronal damage. Alternatively, or additionally, calcium channel blockers, by limiting the influx of calcium into neurones, might prevent the chain of intracellular events which calcium initiates (protease and lipase activation, mitochondrial dysfunction, etc.) and which leads ultimately to irreversible ischaemic cell damage (for reviews see Siesjö 1981; Greenberg 1987). In this review, we consider the evidence that calcium channel blockers are capable of influencing the amount of ischaemic brain damage in animal models of focal cerebral ischaemia and the extent to which improved perfusion or blockade of neuronal Ca2+ entry contributes to any amelioration. The review is based on published reports of the effects of nimodipine in the rat from our laboratory (Mohamed et al. 1984, 1985 a, b; Gotoh et al. 1986).


Calcium Antagonist Middle Cerebral Artery Occlusion Focal Cerebral Ischemia Cereb Blood Flow Middle Cerebral Artery Territory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnett GH, Bose B, Little JR, Jones SC, Friel HT (1986) Effects of nimodipine on acute focal cerebral ischemia. Stroke 17:884–890PubMedCrossRefGoogle Scholar
  2. Bartkowski HM (1988) Therapeutic value of a constant intravenous infusion of nimodipine for 24 h after acute cerebral infarction. Stroke 19:147Google Scholar
  3. Brierley JB, Graham DI (1985) Hypoxia and vascular disorders of the central nervous system. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology. Edward Arnold, London, pp 125–207Google Scholar
  4. Brown AW, Brierley JB (1968) The nature, distribution and earliest stages of anoxic ischaemic nerve cell damage in the rat as defined by the optical microscope. Br J Exp Pathol 49:87–106PubMedGoogle Scholar
  5. Gelmers HJ, Gorter K, De Weerdt CJ, Wiezer HJA (1988) A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med 318:203–207PubMedCrossRefGoogle Scholar
  6. Germano IM, Bartkowski HM, Cassel ME, Pitts LH (1987) The therapeutic value of nimodipine in experimental focal cerebral ischemia. J Neurosurg 67:81–87PubMedCrossRefGoogle Scholar
  7. Gotoh O, Mohamed AA, McCulloch J, Graham DI, Harper AM, Teasdale GM (1986) Nimodipine and the haemodynamic and histopathological consequence of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:321–331PubMedCrossRefGoogle Scholar
  8. Greenberg DA (1987) Calcium channels and calcium channel antagonists. Ann Neurol 21:317–330PubMedCrossRefGoogle Scholar
  9. Hakim AM (1986) Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:676–683PubMedCrossRefGoogle Scholar
  10. Kobayashi S, Obana W, Andrews BT, Nishimura MC, Pitts LH (1988) Lack of effect of nimodipine in experimental regional cerebral ischemia. Stroke 19:147Google Scholar
  11. Maruhn D, Siefert HM, Weber H, Ramsch K, Suwelack D (1985) Pharmacokinetics of nimodipine. Arzneimittelforschung 35:1781–1786PubMedGoogle Scholar
  12. Meyer FB, Anderson RE, Yaksh TL, Sundt TM (1986) Effect of nimodipine on intracellular brain pH, cortical blood flow, and EEG in experimental focal cerebral ischemia. J Neurosurg 64:617–626PubMedCrossRefGoogle Scholar
  13. Mohamed AA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1984) Effect of the calcium antagonist nimodipine on local cerebral blood flow: relationship to arterial blood pressure. J Cereb Blood Flow Metab 4:206–211PubMedCrossRefGoogle Scholar
  14. Mohamed AA, Gotoh O, Graham DI et al. (1985a) Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18:705–711CrossRefGoogle Scholar
  15. Mohamed AA, Mendelow AD, Teasdale GM, Harper AM, McCulloch J (1985b) Effect of the calcium antagonist, nimodipine, on local cerebral blood flow and metabolic coupling. J Cereb Blood Flow Metab 5:26–33CrossRefGoogle Scholar
  16. Osborne KA, Shigeno T, Balarsky AM, Ford I, McCulloch J, Teasdale GM, Graham DI (1987) Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatry 50:402–410PubMedCrossRefGoogle Scholar
  17. Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist, MK-801 reduces focal ischaemic brain damage in the rat. Am Neurol 24:543–551CrossRefGoogle Scholar
  18. Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrine. Am J Physiol 34:H59–H66Google Scholar
  19. Sauter A, Rudin M (1986) Calcium antagonists reduce the extent of infarction in rat middle cerebral artery occlusion model as determined by quantitative magnetic resonance imaging. Stroke 17:1228–1234PubMedCrossRefGoogle Scholar
  20. Siesjö BK (1981) Cell damage in the brain: a speculative hypothesis. J Cereb Blood Flow Metab 1:155–186PubMedCrossRefGoogle Scholar
  21. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60PubMedCrossRefGoogle Scholar
  22. Van Reempts J, Van Deuren B, Van de Ven M, Cornelissen F, Borgers M (1987) Flunarizine reduces cerebral infarct size after photochemically induced thrombosis in spontaneously hypertensive rats. Stroke 18:1113–1119PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. McCulloch
    • 1
  • D. I. Graham
    • 1
  • A. M. Harper
    • 1
  • G. M. Teasdale
    • 2
  1. 1.Wellcome Neuroscience Group, Wellcome Surgical InstituteUniversity of GlasgowGlasgowUK
  2. 2.Institute of Neurological SciencesSouthern General HospitalGlasgowUK

Personalised recommendations