Genetic Control of Aging in the Ascomycete Podospora anserina

  • H. D. Osiewacz
Part of the Reihe der Villa Vigoni book series (VILLA VIGONI, volume 1)


Podospora anserina is a filamentous fungus which shows after prolonged vegetative growth different symptoms of aging: The growth rate of a colony (mycelium) decreases, the pigmentation of the culture changes, the peripheral hyphae (filamentous “cells” of a mycelium) become slender and undulate, and the formation of aerial hyphae is drastical reduced. Some days after the first occurrence of these morphological symptoms of aging, the culture stops growing and dies. Since the first description of this “senescence syndrome” in the early 1950s [37], senescence has been extensively investigated at the physiological, genetic, and molecular levels. Emerging from these investigations are first ideas about the molecular mechanisms controlling aging in this simple eukaryotic microorganism.


Mating Type Locus Recombinase Activity Mitochondrial Plasmid Podospora Anserina Senescent Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akins RA, Kelley RL, Lambowitz AM (1986) Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell 47: 505–516PubMedCrossRefGoogle Scholar
  2. 2.
    Bégueret J, Razanamparany V, Perrot M, Barreau C (1984) Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene 32: 487–492PubMedCrossRefGoogle Scholar
  3. 3.
    Belcour L, Begel O, Mosse MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina. Curr Genet 3: 13–21CrossRefGoogle Scholar
  4. 4.
    Belcour L, Begel O, Keller AM, Vierny C (1982) Does senescence in Podospora anserina result from instability of the mitochondrial genome. In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Habor, New York, pp 415–422Google Scholar
  5. 5.
    Bertrand H, Chan BSS, Griffiths AIF (1985) Insertion of a foreign nucleotide sequence into mitochondrial DNA causes senescence in Neurospora intermedia. Cell 41: 877–884PubMedCrossRefGoogle Scholar
  6. 6.
    Bertrand H, Griffiths AJF, Court DA, Cheng CK (1986) An extrachromosomal plasmid is the etiological precursor of kalDNA insertion sequences in the mitochondrial chromosome of senescent Neurospora. Cell 47: 829–837PubMedCrossRefGoogle Scholar
  7. 7.
    Brygoo Y, Debuchy R (1985) Transformation by integration in Podospora anserina: I. Methodology and phenomenology. Mol Gen Genet 200: 128–131CrossRefGoogle Scholar
  8. 8.
    Cummings DJ, Belcour L, Grandchamps C (1979) Mitochondrial DNA of Podospora anserina: II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171: 239–250PubMedCrossRefGoogle Scholar
  9. 9.
    Cummings DJ, MacNeil IA, Domenico J, Matsuura ET (1985) Excision-amplification of mitochondrial DNA of Podospora anserina. DNA sequence analysis of three unique ‘Plasmids’. J Mol Biol 185: 659–680PubMedCrossRefGoogle Scholar
  10. 10.
    Cummings DJ, McNally KL, Domenico JM, Matsuura ET (1990) The complete DNA sequence of the mitochondrial genome of Podospora anserina. Curr Genet 17: 375–402PubMedCrossRefGoogle Scholar
  11. 11.
    Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of genetics, vol I. Plenum, New York, pp 531–551Google Scholar
  12. 12.
    Esser K, Böckelmann B (1985) Fungi. In: Lints FA (ed) Nonmammalian models for research on aging. Interdisciplinary topics in gerontology, vol 21. Karger, Basel, pp 231–246Google Scholar
  13. 13.
    Esser K, Keller E (1976) Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet 144: 107–110PubMedCrossRefGoogle Scholar
  14. 14.
    Esser K, Kuenen R (1967) Genetics of fungi. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  15. 15.
    Esser K, Tudzynski P (1980) Senescence in fungi. In: Thimann KV (ed) Senescence in plants. CRC, Boca Raton, pp 67–83Google Scholar
  16. 16.
    Esser K, Kück U, Lang-Hinrichs C, Lemke P, Osiewacz HD, Stahl U, Tudzynski P (1986) Plasmids of eukaryotes. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  17. 17.
    Fernandez-Larrea J, Stahl U (1989) Transformation of Podospora anserina with a dominant resistance gene. Curr Genet 16: 57–60CrossRefGoogle Scholar
  18. 18.
    Fujimoto S, Yamagishi H (1987) Isolation of an excision product of T-cell receptor αchain gene rearrangements. Nature 327: 242–243PubMedCrossRefGoogle Scholar
  19. 19.
    Goguel V, Bailone A, Devoret R, Jacq C (1989) The bI4 RNA mitochondrial maturase of Saccharomyces cerevisiae can stimulate intra-chromosomal recombination in Escherichia coli. Mol Gen Genet 216: 70–74PubMedCrossRefGoogle Scholar
  20. 20.
    Holt JL, Harding AE, Morgan-Hughes JA (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719PubMedCrossRefGoogle Scholar
  21. 21.
    Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase of deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170: 1044–1048PubMedCrossRefGoogle Scholar
  22. 22.
    Kadenbach B, Müller-Höcker J (1990) Mutations of mitochondrial DNA and human death. Naturwissenschaften 77: 221–225PubMedCrossRefGoogle Scholar
  23. 23.
    Kück U, Stahl U, Esser K (1981) Plasmid-like DNA is part of the mitochondrial DNA in Podospora anserina. Curr Genet 5: 143–147CrossRefGoogle Scholar
  24. 24.
    Kück U, Kappelhoff B, Esser K (1985 a) Despite mtDNA polymorphism the mobile in-tron (plDNA) of the COI gene is present in different races of Podospora anserina. Curr Genet 10: 59–67CrossRefGoogle Scholar
  25. 25.
    Kück U, Osiewacz HD, Schmidt B, Kappelhoff B, Schulte E, Stahl U, Esser K (1985 b) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9: 373–382PubMedCrossRefGoogle Scholar
  26. 26.
    Kunisada T, Yamagishi H, Ogita Z, Hirakawa T, Mitsui Y (1985) Appearance of extrachromosomal circular DNAs during in vivo and in vitro aging of mammalian cells. Mech Aging Dev 29: 89–99PubMedCrossRefGoogle Scholar
  27. 27.
    Marcou D (1961) Notion de longévité et nature cytoplasmatique du déterminant de la sénescence chez quelques champignons. Ann Sci Nat Bot 12: 653–764Google Scholar
  28. 28.
    Meinhardt F, Kempken F, Kämper J, Esser K (1990) Linear plasmids among eukaryotes: fundamentals and application. Curr Genet 17: 89–95PubMedCrossRefGoogle Scholar
  29. 29.
    Michel F, Lang B (1985) Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature 316: 641–643PubMedCrossRefGoogle Scholar
  30. 30.
    Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8: 299–305CrossRefGoogle Scholar
  31. 31.
    Osiewacz HD, Hermanns J, Marcou D, Triffi M, Esser K (1989) Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutat Res 219: 9–15PubMedGoogle Scholar
  32. 32.
    Osiewacz HD, Clairmont A, Huth M (1990) Electrophoretic karyotype of the as-comycete Podospora anserina. Curr Genet 18: 481–483CrossRefGoogle Scholar
  33. 33.
    Osiewacz HD, Skaletz A, Esser K (1991) Integrative transformation of the ascomycete Podospora anserina: identification of the mating type locus on chromosome VII of elec-trophoretically separated chromosomes. Appl Microbiol Biotechnol 35: 38–45PubMedCrossRefGoogle Scholar
  34. 34.
    Punt PJ, Oliver RP, Dingenmanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117–124PubMedCrossRefGoogle Scholar
  35. 35.
    Riabowol KT, Shmookler Reis RJ, Goldstein S (1985 a) Properties of extrachromosomal covalently closed circular DNA isolated and cloned from aged human fibroblasts. Age 8: 114–121CrossRefGoogle Scholar
  36. 36.
    Riabowol KT, Shmookler Reis RJ, Goldstein S (1985 b) Tandemly repetitive and interspersed repetitive sequences are differentially represented in extrachromosomal covalently closed circular DNA of human diploid fibroblasts. Nucleic Acids Res 13: 5563–5584PubMedCrossRefGoogle Scholar
  37. 37.
    Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication vegetative ininterrompue et illimité de l’ascomycete Podospora anserina. C R Acad Sci Paris 237: 838–855PubMedGoogle Scholar
  38. 38.
    Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants of Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211: 342–349CrossRefGoogle Scholar
  39. 39.
    Slagboom PE, Vijg J (1989) Genetic instability and aging: theories, facts, and future perspectives. Genome 31: 373–385PubMedCrossRefGoogle Scholar
  40. 40.
    Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162: 341–343PubMedCrossRefGoogle Scholar
  41. 41.
    Stahl U, Kück U, Tudzynski P, Esser K (1980) Characterization and cloning of plasmid like DNA of the ascomycete Podospora anserina. Mol Gen Genet 178: 639–646PubMedCrossRefGoogle Scholar
  42. 42.
    Steinhilber W, Cummings DJ (1986) A DNA polymerase activity with characteristics of a reverse transcriptase in Podospora anserina. Curr Genet 10: 389–392PubMedCrossRefGoogle Scholar
  43. 43.
    Tudzynski P, Esser K (1979) Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Genet 173: 71–84PubMedCrossRefGoogle Scholar
  44. 44.
    Tudzynski P, Stahl U, Esser K (1982) Development of a eukaryotic cloning system in Podospora anserina: I. Long-lived mutants as potential recipients. Curr Genet 6: 219–222CrossRefGoogle Scholar
  45. 45.
    Wallace DC (1989) Mitochondrial DNA mutations and neuromuscular disease. TIBS 5: 9–13Google Scholar
  46. 46.
    Yamagishi H, Kunisada T, Takeda T (1985) Amplification of extrachromosomal small circular DNAs in a murine model of accelerated senescence. A brief note. Mech Aging Dev 29: 101–103CrossRefGoogle Scholar
  47. 47.
    Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S (1989) An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339: 309–311PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H. D. Osiewacz

There are no affiliations available

Personalised recommendations