Skip to main content

Tissue Reactions to Ceramic Wear Debris: Clinical Cases vs. Animal Model

  • Conference paper

Part of the book series: Ceramics in Orthopaedics ((CIO))

Abstract

Wear is the main limiting factor to artroprostheses’ lifetime: at local level the cascade of events induced by reactions to wear debris is still the most frequent cause of implant failure and revision, while the ions released by wear debris originate systemic reactions, depending on their transport by the blood flow to peripheral organs, thanks to the vascularization of the reactive membrane surrounding the implant. (Schmalzried and Callaghan 1999, Urban et al. 2000, Archimbeck et al. 2000, Fisher et al 2001, Sedel 2001, Dumbleton et al. 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archibeck MJ, Jacobs JJ, Black J (2000) Alternate bearing surfaces in total joint arthroplasty: biologic considerations. Clin Orthop 379:12–21

    Article  PubMed  Google Scholar 

  2. Black J (1997) Prospects for alternate Bearing surfaces in total hip replacement arthroplasty of the hip. In: Puhl W (ed) Performance of the wear couple BIOLOX Forte in hip arthroplasty, Enke Verlag, Stuttgart, pp 2–10

    Google Scholar 

  3. Catelas I, Petit A, Zukor DJ, Marchand R, Yahia LH, Huk OL(1999) Induction of macrophage apoptosis by ceramic and polyethylene particles in vitro. Biomaterials 20:625–630

    Article  CAS  PubMed  Google Scholar 

  4. De Santis E, Maccauro G, Proietti L, et al. (2001) Histologic and ultrastructural analysis of Alumina wear debris. In: Giannini S, Moroni A (eds) Bioceramics 13, TransTech Publ, Zurich, 995–998

    Google Scholar 

  5. Dumbleton JH, Manley MT, Edidin AA (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 17:649–661

    Article  PubMed  Google Scholar 

  6. Fisher J, Stone MH, Tipper JL, Ingham E. (2001) Wear debris generation with metal-on-polyethilene, Metal-on Metal, Ceramic-on-Ceramic hip prostheses. In: Rieker C, Oberholzer S, Wyss U (eds) World Tribology Forum in Arthroplasty. Hans Huber, Bern, pp 25–30

    Google Scholar 

  7. ISO 6474 (1994) Implants for surgery—Ceramic materials based on high purity alumina. International Standard Organization

    Google Scholar 

  8. ISO 13536 (1997) Implants for surgery—Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). International Standard Organization

    Google Scholar 

  9. Lto A, Tateishi T, Niwa S, et al. (1993) In vitro evaluation of the cytocompatibility of wear particles generated by UHMWPE-zirconia friction. Clin Mater 12:203–209

    Article  Google Scholar 

  10. Kubo T, Sawada K, Hirakava K, et al (1999) Histiocite reaction in rabbit femurs to UHMWPE, metal, and ceramic particles in different sizes. J Biomed Mater Res 45:363–369

    Article  CAS  PubMed  Google Scholar 

  11. Lerouge S, Yahia L’H, Huk O, et al. (1995) Wear debris and inflammatory response in tissues around tailed alumina ceramic-on-ceramic hip prostheses. Bioceramics 8, Wilson J, Hench LL, Greenspan D (eds), Elsevier Publ., Oxford, UK, pp 145–150

    Google Scholar 

  12. Lohmann CH, Dean DD, Koster G, et al. (2002) Ceramic and PMMA particles differentially affect osteoblast phenotype. Biomaterials 23:1855–1863.

    Article  CAS  PubMed  Google Scholar 

  13. Maccauro G, Romanini E, Dall’Acqua D, et al (1998) Una scheda di valutazione degli impianti protesici rimossi. GIOT 24:375–381

    Google Scholar 

  14. Maccauro G, Romano G, Nizegorodcew T, et al (1998) Considerazioni sull’influenza della dimensione delle particelle nella patologia da detriti metallici e plastici GIOT 24:579–583

    Google Scholar 

  15. Maccauro G, Piconi C, Pilloni L, et al. (2000) Surface analysis of a femoral stem after failure of total hip replacement. Int Orthop (SICOT) 24:231–233

    Article  CAS  Google Scholar 

  16. Mebouta Nkamgueu E, Adnet JJ, Bernard J, et al.(2000) In vitro effects of zirconia and alumina particles on human blood monocyte-derived macrophages: X-ray microanalysis and flow cytometric studies. J Biomed Mater Res 52:587–594

    Article  Google Scholar 

  17. Nizegorodcew T, Gasparini G, Maccauro G, et al. Massive osteolysis induced by high molecular weigh polyethylene debris (1997). Int Orthop (SICOT) 21:14–18.

    Article  CAS  PubMed Central  Google Scholar 

  18. Rae T (1986) The macrophage to implant materials with special reference to those used in Orthopaedics. CRC Crit Rev Biocomp 2: 97

    CAS  Google Scholar 

  19. Ryu RK, Bovill EG, Skinner HB, et al (1987) Soft tissue sarcoma associated with aluminum oxide ceramic total hip arthroplasty. A case report. Clin Orthop 216:207–212

    Google Scholar 

  20. Schmalzried TP, Callaghan JJ (1999) Current Concepts Review: Wear in total hip and knee replacements. J Bone Joint Surg 81-A:115–136

    Google Scholar 

  21. Schmalzried TP (2001) Patient activity and wear. In: Rieker C, Oberholzer S, Wyss U (eds) World Tribology Forum in Arthroplasty. Hans Huber, Bern, pp 31–34

    Google Scholar 

  22. Sedel L, Simeon J, Meunier A, Villette JM, Launay SM b(1992) Prostaglandin E2 level in tissue surrounding aseptic failed total hips. Effects of materials Arch Orthop Trauma Surg 111:225–258

    Google Scholar 

  23. Sedel L (2001) Tribology of hip joint replacement. In: Surgical techniques in Orthopedics and Traumatology, Edition Scientifiques et Medicales Elsevier SAS, Paris, 55-430-E-10

    Google Scholar 

  24. Urban RM, Jacobs JJ, Tomlinson MJ, et al (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg 82-A: 457–477

    Google Scholar 

  25. Willert MG (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mat Res 11:157–164

    Article  CAS  Google Scholar 

  26. Willert MG, Broback LG, Buchan GM, et al (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacement. Clin Orthop 333:51–75

    PubMed  Google Scholar 

Download references

Authors

Editor information

Hartmut Zippel Martin Dietrich

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Steinkopff Verlag, Darmstadt

About this paper

Cite this paper

Maccauro, G., Piconi, C., Muratori, F., De Santis, V., Burger, W. (2003). Tissue Reactions to Ceramic Wear Debris: Clinical Cases vs. Animal Model. In: Zippel, H., Dietrich, M. (eds) Bioceramics in Joint Arthroplasty. Ceramics in Orthopaedics. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-85763-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85763-8_10

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1417-1

  • Online ISBN: 978-3-642-85763-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics