Skip to main content

General Properties of Axoplasmic Transport

  • Conference paper
Axoplasmic Transport in Physiology and Pathology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Axoplasmic transport has become a well-established phenomenon whose properties have been described in depth in many publications over the last years. The biological significance of axoplasmic transport is widely recognized. Lacking detailed knowledge of the underlying mechanisms, in this paper all movement of molecules and particles inside nerve cell processes that cannot be related to diffusion or Brownian movement is to be called“axoplasmic transport”. This leaves open the question whether one “unitary mechanism” can account for all the phenomena mentioned below, or whether several mechanisms are involved. The term“mechanism” when used in this article is therefore meant to encompass as many different mechanisms as might be needed ultimately to account for all of the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe T, Haga T, Kurokawa M (1973) Rapid transport of phosphatidylcholine occuring simultaneously with protein transport in the frog sciatic nerve. Biochem J 136: 731–740

    PubMed  CAS  Google Scholar 

  2. Baitinger C, Levine J, Lorenz T, Simon C, Skene P, Willard M (1982) Characteristics of axonally transported proteins. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 110–120

    Google Scholar 

  3. Bisby MA (1980) Retrograde axonal transport. In: Fedoroff et al. (eds) Advances in cellular neurobiology, vol I. Acad Press, New York, pp 69–117

    Google Scholar 

  4. Bisby MA (1982) Retrograde axonal transport of endogenous proteins. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 193–199

    Google Scholar 

  5. Bisby MA (1982) Ligature techniques. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 437–441

    Google Scholar 

  6. Bisby MA, Bulger VT (1977) Reversal of axonal transport at a nerve crush. J Neurochem 29: 313–320

    Article  PubMed  CAS  Google Scholar 

  7. Brady ST, Lasek RJ (1982) The slow components of axonal transport: movements, composition and organization. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 206–217

    Google Scholar 

  8. Breer H, Rahmann H (1974) Axonal transport of [3 HJglucose radioactivity in the optic system of Scardinius erythrophthalmus. J Neurochem 22: 245–250

    Article  PubMed  CAS  Google Scholar 

  9. Brimijoin S (1979) On the kinetics and maximal capacity of the system for rapid axonal transport in mammalian neurons. J Physiol 292: 325–337

    PubMed  CAS  Google Scholar 

  10. Brimijoin S, Olsen J, Rosenson R (1979) Comparison of the temperature-dependence of rapid axonal transport and microtubules in nerves of the rabbit and bullfrog. J Physiol 287: 303–314

    PubMed  CAS  Google Scholar 

  11. Brimijoin S, Wiermaa MJ (1977) Rapid axonal transport of tyrosine hydroxylase in rabbit sciatic nerves. Brain Res 121: 77–96

    Article  PubMed  CAS  Google Scholar 

  12. Brimijoin S, Wiermaa MJ (1978) Rapid orthograde and retrograde axonal transport of acetylcholinesterase as characterized by the stop-flow technique. J Physiol 285: 129–142

    PubMed  CAS  Google Scholar 

  13. Cancalon P (1979) Influence of temperature on the velocity and on the isotope profile of slowly transported labeled proteins. J Neurochem 32: 997–1007

    Article  PubMed  CAS  Google Scholar 

  14. Copeland AR (1976) Axonal transport — II. Convection. Bull Math Biol 38: 435–444

    PubMed  CAS  Google Scholar 

  15. Couraud J-Y, Di Giamberardino L (1982) Axonal transport of the molecular forms of acetylcholinesterase. Its reversal at a nerve transection. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 144–152

    Google Scholar 

  16. Csanyi V, Gervai J, Lajtha A (1973) Axoplasmic transport of free amino acids. Brain Res 56: 271–284

    Article  PubMed  CAS  Google Scholar 

  17. Dahlström A (1971) Axoplasmic transport (with particular respect to adrenergic neurons). Phil Trans R Soc London Ser B 261: 325–358

    Article  Google Scholar 

  18. Davison PF (1970) Axoplasmic transport: physical and chemical aspects. In: Schmitt FO (ed) The neurosciences: Second study program. Rockefeller Univ Press, New York, pp 851–857

    Google Scholar 

  19. De Lorenzo AJD (1970) The olfactory neuron and the blood-brain barrier. In: Wolsten-holme J, Knight J (eds) Taste and smell in vertebrates. Churchill, London

    Google Scholar 

  20. Droz B, Brunetti M, Di Giamberardino L, Koenig HL, Porcellati G (1982) Axoplasmic transport and axon-glia transfer of phospholipid constituents. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 170–174

    Google Scholar 

  21. Droz B, Rambourg A, Koenig HL (1975) The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res 93: 1–13

    Article  PubMed  CAS  Google Scholar 

  22. Durham ACH (1974) A unified theory of the control of actin and myosin in nonmucle movements. Cell 2: 123–136

    Article  PubMed  CAS  Google Scholar 

  23. Edström A, Hanson M (1973) Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves. Brain Res 58: 345–354

    Article  PubMed  Google Scholar 

  24. Elam JS, Peterson NW (1976) Axonal transport of sulfated glycoproteins and mucopolysaccharides in the garfish olfactory nerve. J Neurochem 26: 845–850

    Article  PubMed  CAS  Google Scholar 

  25. Ellisman MH (1982) A hypothesis for rapid axoplasmic transport based upon focal interactions between axonal membrane systems and the microtrabecular crossbridges of the axoplasmic matrix. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 390–396

    Google Scholar 

  26. Erdmann G, Wiegand H, Wellhöner HH (1975) Intraaxonal and extraaxonal transport of 1251-tetanus toxin in early local tetanus. Naunyn-Schmiedeberg’s Arch Pharmacol 290: 357–373

    Article  CAS  Google Scholar 

  27. Flament-Durand J, Couck A-M, Dustin P (1975) Studies on the transport of secretory granules in the magnocellular hypothalamic neurons of the rat. II. Action of vincristine on axonal flow and neurotubules in the paraventricular and supraoptic nuclei. Cell Tissue Res 164: 1–9

    Article  PubMed  CAS  Google Scholar 

  28. Forman DS (1982) Saltatory organelle movement and the mechanism of fast axonal transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 234–240

    Google Scholar 

  29. Forman DS, McEwen BS, Grafstein B (1971) Rapid transport of radioactivity in goldfish optic nerve following injections of labeled glucosamine. Brain Res 28: 119–130

    Article  PubMed  CAS  Google Scholar 

  30. Forman DS, Padjen AL, Siggins GR (1975) Movement of organelles in living nerve fibers (scientific film). National Audio Visual Center, Washington

    Google Scholar 

  31. Forman DS, Padjen AL, Siggins GR (1977) Axonal transport of organelles visualized by light microscopy: cinemicrographic and computer analysis. Brain Res 136: 197–213

    Article  PubMed  CAS  Google Scholar 

  32. Friede RL, Ho K-C (1977) The relation of axonal transport of mitochondria with microtubules and other axoplasmic organelles. J Physiol 265: 507–519

    PubMed  CAS  Google Scholar 

  33. Frizell M, Sjöstrand J (1974) The axonal transport of slowly migrating [3 H]-leucine labeled proteins and regeneration rate in regenerating hypoglossal and vagus nerves of the rabbit. Brain Res 81: 267–283

    Article  PubMed  CAS  Google Scholar 

  34. Gainer H, Fink DJ (1982) Covalent labelling techniques and axonal transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 464–470

    Google Scholar 

  35. Gainer H, Sarne Y, Brownstein MJ (1977) Neurophysin biosynthesis: conversion of a putative precursor during axonal transport. Science 195: 1354–1356

    Article  PubMed  CAS  Google Scholar 

  36. Goldberg DJ, Harris DA, Lubit BW, Schwartz JH (1980) Analysis of the mechanism of fast axonal transport by intracellular injection of potentially inhibitory macromolecules: Evidence for a possible role of actin filaments. Proc Natl Acad Sci USA 77: 7448–7452

    Article  PubMed  CAS  Google Scholar 

  37. Goldberg DJ, Schwartz JH, Sherbany AA (1978) Kinetic properties of normal and perturbed axonal transport of serotonin in a single identified axon. J Physiol 281: 559–579

    PubMed  CAS  Google Scholar 

  38. Goldman JE, Schwartz JH (1974) Cellular specificity of serotonin storage and axonal transport in identified neurones of Aplysia californica. J Physiol 242: 61–76

    PubMed  CAS  Google Scholar 

  39. Goldman RD, Chojnacki B, Goldman AE, Starger J, Steinert P, Talian J, Whitman M, Zackroff R (1981) Aspects of the cytoskeleton and cytomusculature of nonmucle cells. Neurosci Res Prog Bull 19: 59–82

    CAS  Google Scholar 

  40. Goodrum JF, Toews AD, Morell P (1979) Axonal transport and metabolism of [3H]fucose and [35 SJsulfate-labeled macromolecules in the rat visual system. Brain Res 176: 255–272

    Article  PubMed  CAS  Google Scholar 

  41. Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60: 1167–1283

    PubMed  CAS  Google Scholar 

  42. Gross GW (1973) The effect of temperature on the rapid axoplasmic transport in C-fibers. Brain Res 56: 359–363

    Article  PubMed  CAS  Google Scholar 

  43. Gross GW (1975) The microstream concept of axoplasmic and dendritic transport. Adv Neurol 12: 283–296

    PubMed  CAS  Google Scholar 

  44. Gross GW, Beidler LM (1975) A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J Neurobiol 6: 213–232

    Article  PubMed  CAS  Google Scholar 

  45. Gross GW, Kreutzberg GW (1978) Rapid axoplasmic transport in the olfactory nerve of the pike: I. Basic transport parameters for proteins and amino acids. Brain Res 139: 65–76

    Article  PubMed  CAS  Google Scholar 

  46. Gross GW, Stewart GH, Horwitz B (1981) Molecular diffusion cannot account for spreading of isotope distribution peaks during rapid axoplasmic transport. Brain Res 216: 215–218

    Article  PubMed  CAS  Google Scholar 

  47. Gross GW, Weiss DG (1977) Subcellular fractionation of rapidly transported axonal material in olfactory nerve: evidence for a size-dependent molecule separation during transport. Neurosci Lett 5: 15–20

    Article  CAS  Google Scholar 

  48. Gross GW, Weiss DG (1982) Theoretical considerations on rapid transport in low viscosity axonal regions. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 330–341

    Google Scholar 

  49. Hammerschlag R (1982) Multiple roles of calcium in the initiation of fast axonal transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 279–286

    Google Scholar 

  50. Hammerschlag R, Stone GC (1982) Fast axonal transport as endomembrane flow. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 406–413

    Google Scholar 

  51. Hanson M, Bergqvist JE (1982) In vitro chamber systems to study axonal transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 429–436

    Google Scholar 

  52. Hanson M, Edström A (1978) Mitosis inhibitors and axonal transport. Int Rev Cytol Suppl 7: 373–402

    PubMed  CAS  Google Scholar 

  53. Henkart MP, Reese TS, Brinley FJ (1978) Endoplasmic reticulum sequesters calcium in the squid giant axon. Science 202: 1300–1303

    Article  PubMed  CAS  Google Scholar 

  54. Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57: 315–344

    Article  PubMed  CAS  Google Scholar 

  55. Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66: 351–366

    Article  PubMed  CAS  Google Scholar 

  56. Ingoglia NA, Zanakis MF (1982) Axonal transport of 4S RNA. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 161–169

    Google Scholar 

  57. Ingoglia NA, Sturman JA, Eisner RA (1977) Axonal transport of putrescine, spermidine and spermine in normal and regenerating goldfish optic nerves. Brain Res 130: 433–445

    Article  PubMed  CAS  Google Scholar 

  58. Isenberg G, Schubert P, Kreutzberg GW (1980) Experimental approach to test the role of actin in axonal transport. Brain Res 194: 588–593

    Article  PubMed  CAS  Google Scholar 

  59. Kanje M, Edström A, Ekström P (1982) The role of Ca2+ in rapid axonal transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 294–300

    Google Scholar 

  60. Karlsson J-O (1977) Is there an axonal transport of amino acids? J Neurochem 29: 615–617

    Article  PubMed  CAS  Google Scholar 

  61. Karlsson J-O (1982) Isolation and characterization of undenaturated rapidly transported proteins. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 121–124

    Google Scholar 

  62. Karlsson J-O, Sjöstrand J (1971) Synthesis, migration and turnover of protein in retinal ganglion cells. J Neurochem 18: 749–767

    Article  PubMed  CAS  Google Scholar 

  63. Kerkut GA (1975) Axoplasmic transport. Comp Biochem Physiol A 51: 701–704

    Article  PubMed  CAS  Google Scholar 

  64. Kidwai AM, Ochs S (1969) Components of fast and slow phases of axoplasmic flow. J Neurochem 16: 1105–1112

    Article  PubMed  CAS  Google Scholar 

  65. Kirkpatrick JB, Stern LZ (1973) Axoplasmic flow in human sural nerve. Arch Neurol 28: 308–312

    Article  PubMed  CAS  Google Scholar 

  66. Kreutzberg GW (1969) Neuronal dynamics and axonal flow. IV. Blockade of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci USA 62: 722–728

    Article  PubMed  CAS  Google Scholar 

  67. Kristensson K (1970) Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol 16: 293–300

    Article  PubMed  CAS  Google Scholar 

  68. Kristensson K (1982) Retrograde axonal transport of exogenous macromolecules. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 200–205

    Google Scholar 

  69. Kristensson K, Olsson Y (1971) Uptake and retrograde axonal transport of peroxidase in hypoglossal neurons. Electron microscopical localization in neuronal perikaryon. Acta Neuropathol 19: 1–9

    Article  PubMed  CAS  Google Scholar 

  70. Kristensson K, Olsson Y, Sjöstrand J (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res 32: 399–406

    Article  PubMed  CAS  Google Scholar 

  71. Krygier-Brévart V, Weiss DG, Mehl E, Schubert P, Kreutzberg GW (1974) Maintenance of synaptic membranes by the fast axonal flow. Brain Res 77: 97–110

    Article  PubMed  Google Scholar 

  72. Lasek RJ, Brady ST (1982) The structural hypothesis of axonal transport: two classes of moving elements. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 397–405

    Google Scholar 

  73. La Vail JH, La Vail MM (1974) The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: aught and electron microscopic study. J Comp Neurol 157: 303–358

    Article  Google Scholar 

  74. LeBeux XJ, Willemot J (1975) An ultrastructural study of the microfilaments in rat brain by means of heavy meromyosin labeling. I. The perikaryon, dendrites and the axon. Cell Tiss Res 160: 1–36

    CAS  Google Scholar 

  75. Leone J, Ochs S (1978) Anoxic block and recovery of axoplasmic transport and electrical excitability of nerve. J Neurochem 9: 229–245

    CAS  Google Scholar 

  76. Levine J, Simon C, Willard M (1982) Mechanistic implications of the behavior of axonally transported proteins. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 275–278

    Google Scholar 

  77. Longo FM, Hammerschlag R (1980) Relation of somal lipid synthesis to the fast axonal transport of protein and lipid. Brain Res 193: 471–485

    Article  PubMed  CAS  Google Scholar 

  78. Lorenz T, Willard M (1978) Subcellular fractionation of intraaxonally transported polypeptides in the rabbit visual system. Proc Natl Acad Sci USA 75: 505–509

    Article  PubMed  CAS  Google Scholar 

  79. Lynch G, Smith RL, Browning MD, Deadwyler S (1975) Evidence for bidirectional dendritic transport of horseradish peroxidase. Adv Neurol 12: 297–311

    PubMed  CAS  Google Scholar 

  80. Mackey S, Schuessler G, Goldberg DJ, Schwartz JH (1981) Dependence of fast axonal transport on the local concentration of organelles. Biophys J 36: 455–459

    Article  PubMed  CAS  Google Scholar 

  81. Magid A (1973) Axonal transport-simple diffusion? Science 182: 180

    Article  PubMed  CAS  Google Scholar 

  82. Mesulam M-M (1982) Tracing neural connections with horseradish peroxidase. John Wiley, Chichester

    Google Scholar 

  83. Mori H, Komiya Y, Kurokawa M (1979) Slowly migrating axonal polypeptides. Inequalities in their rate and amount of transport between two branches of bifurcating axons. J Cell Biol 82: 174–184

    Article  PubMed  CAS  Google Scholar 

  84. Morré DJ (1982) Intracellular vesicular transport: vehicles, guide elements, mechanisms. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 2–14

    Google Scholar 

  85. Muñoz-Martínez EJ (1982) Axonal retention of transported material and the lability of nerve terminals. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 267–274

    Google Scholar 

  86. Muñoz-Martínez EJ, Nêñez R, Sanderson A (1981) Axonal transport: a quantitative study of retained and transported protein fraction in the cat. J Neurobiol 12: 15–26

    Article  PubMed  Google Scholar 

  87. Norström A (1975) Axonal transport and turnover of neurohypophysial proteins in the rat. Ann NY Acad Sci 248: 46–63

    Article  PubMed  Google Scholar 

  88. Ochs S (1972) Rate of fast axoplasmic transport in mammalian nerve fibers. J Physiol 227: 627–645

    PubMed  CAS  Google Scholar 

  89. Ochs S (1972) Fast transport of materials in mammalian nerve fibers. Science 176: 252–260

    Article  PubMed  CAS  Google Scholar 

  90. Ochs S (1975) Retention and redistribution of proteins in mammalian nerve fibres by axoplasmic transport. J Physiol 253: 459–475

    PubMed  CAS  Google Scholar 

  91. Ochs S (1982) On the mechanism of axoplasmic transport In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 342–350

    Google Scholar 

  92. Ochs S, Erdman J, Jersild RA, McAdoo V (1978) Routing of transported materials in the dorsal root and nerve fiber branches of the dorsal root ganglion. J Neurobiol 9: 465–481

    Article  PubMed  CAS  Google Scholar 

  93. Ochs S, Worth RM, Chan S-Y (1977) Calcium requirement for axoplasmic transport in mammalian nerve. Nature (London) 270: 748–750

    Article  CAS  Google Scholar 

  94. Papasozomenos SCh, Autilio-Gambetti L, Gambetti P (1982) The IDPN axon: Rearrangement of axonal cytoskeleton and organelles following β,β’-iminodipropionitrile (IDPN) intoxication. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 241–250

    Google Scholar 

  95. Porter KR, Byers HR, Ellisman MH (1979) The cytoskeleton. In: Schmitt FO, Worden FG (eds) The neurosciences, 4th study program. MIT Press, Cambridge, pp 703–722

    Google Scholar 

  96. Price DL, Griffin J, Young A, Peck K, Stocks A (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188: 945–947

    Article  PubMed  CAS  Google Scholar 

  97. Rebhun LI (1972) Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol 32: 93–137

    Article  PubMed  CAS  Google Scholar 

  98. Rebhun LI, Sander G (1971) Electron microscope studies of frozen-substituted marine eggs. III. Structure of the mitotic apparatus of the first meiotic division. Am J Anat 130: 35–54

    Article  PubMed  CAS  Google Scholar 

  99. Rubinson KA, Baker PF (1979) The flow properties of axoplasm in a defined chemical environment: influence of anions and calcium. Proc R Soc London B 205: 323–345

    Article  CAS  Google Scholar 

  100. Schmid G, Wagner L, Weiss DG (1982) Rapid axoplasmic transport of free leucine. J Neurobiol, in press

    Google Scholar 

  101. Schmidt RE, McDougal DB (1978) Axonal transport of selected particle-specific enzymes in rat sciatic nerve in vivo and its response to injury. J Neurochem 30: 527–535

    Article  PubMed  CAS  Google Scholar 

  102. Schwartz JH (1979) Axonal transport: components, mechanisms, and specificity. Ann Rev Neurosci 2: 467–504

    Article  PubMed  CAS  Google Scholar 

  103. Schwartz JH, Goldberg DJ (1982) Studies on the mechanism of fast axoplasmic transport in single identified neurons. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 351–361

    Google Scholar 

  104. Schwartz JH, Goldman JE, Ambron RT, Goldberg DJ (1975) Axonal transport of vesicles carrying serotonin in the metacerebral neuron of Aplysia californica. Cold Spring Harbor Symp Quant Biol 40: 83–92

    Article  Google Scholar 

  105. Shield LK, Griffin JW, Drachman DB, Price DL (1977) Retrograde axonal transport: a direct method for measurement of rate. Neurology 27: 393

    Google Scholar 

  106. Smith DS, Järlfors U, Beránek R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J Cell Biol 46: 199–219

    Article  PubMed  CAS  Google Scholar 

  107. Smith RS (1980) The short term accumulation of axonally transported organelles in the region of localized lesions of single myelinated axons. J Neurocytol 9: 39–65

    Article  PubMed  CAS  Google Scholar 

  108. Smith RS (1982) Axonal transport of optically detectable particulate organelles. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 181–192

    Google Scholar 

  109. Smith RS, Koles ZJ (1976) Mean velocity of optically detected intra-axonal particles measured by a cross-correlation method. Can J Physiol Pharmacol 54: 859–869

    Article  PubMed  CAS  Google Scholar 

  110. Snyder RE, Smith RS (1982) Application of position-sensitive detectors to the study of the axonal transport of β-emitting isotopes. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 442–453

    Google Scholar 

  111. Starkey RR, Brimijoin S (1979) Stop-flow analysis of the axonal transport of DOPA decarboxylase (EC 4. 1.1.26) in rabbit sciatic nerves.J Neurochem 32: 437–441

    Article  PubMed  CAS  Google Scholar 

  112. Stearns ME (1980) Lattice-dependent regulations of axonal transport by calcium ions. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1980. Elsevier/ North Holland, Amsterdam, pp 17–30

    Google Scholar 

  113. Stewart GH, Horwitz B, Gross GW (1982) A chromatographic model of axoplasmic transport. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 414–422

    Google Scholar 

  114. Stöckel K, Dumas M, Thoenen H (1978) Uptake and subsequent retrograde axonal transport of nerve growth factor (NGF) are not influenced by neuronal activity. Neurosci Lett 10: 61–64

    Article  PubMed  Google Scholar 

  115. Stöckel K, Schwab M, Thoenen H (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res 99: 1–16

    Article  PubMed  Google Scholar 

  116. Tashiro T, Kurokawa M (1982) Rapid transport of a calmodulin-related polypeptide in the vagal nerve. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 153–160

    Google Scholar 

  117. Thoenen H, Schwab M (1978) Physiological and pathophysiological implications of retrograde transport of macromolecules. In: Adv Pharmacol Therap 5, Neuropsychopharmacol-ogy. Pergamon Press, Oxford New York, pp 37–59

    Google Scholar 

  118. Tsukita S, Ishikawa H (1980) The movement of membraneous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J Cell Biol 84: 513–530

    Article  PubMed  CAS  Google Scholar 

  119. Tytell M, Black MM, Garner JA, Lasek RJ (1981) Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science 214: 179–181

    Article  PubMed  CAS  Google Scholar 

  120. Weiss DG (ed) (1982) Axoplasmic transport. Springer, Berlin Heidelberg New York, 470 p

    Google Scholar 

  121. Weiss DG (1982) 3-O-methyl-D-glucose and ß-alanine: Rapid axoplasmic transport of metabolically inert low molecular weight substances. Neurosci Lett (in press)

    Google Scholar 

  122. Weiss DG, Gross GW (1982) Intracelluar transport in axonal microtubular domains. I. Theoretical considerations on the essential properties of a force generating mechanism. Protoplasma (in press)

    Google Scholar 

  123. Weiss DG, Gross GW (1982) The microstream hypothesis: characteristics, predictions and compatibility with data. In: Weiss DG (ed) Axoplasmic transport. Springer, Berlin Heidelberg New York, pp 362–383

    Google Scholar 

  124. Weiss DG, Schmid G, Wagner L (1980) Influence of microtubule inhibitors on axoplasmic transport of free amino acids. Implications for the hypothetical transport mechanism. In: De Brabander M, De Mey J (eds) Microtubules and microtubule inhibitors 1980. Elsevier/ North Holland, Amsterdam, pp 31–41

    Google Scholar 

  125. Willard M, Cowan WM, Vagelos PR (1974) The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci USA 71: 2183–2187

    Article  PubMed  CAS  Google Scholar 

  126. Zelenä J, Lubinska L, Gutmann E (1968) Acccumulation of organelles at the ends of interrupted axons. Z Zellforsch Mikrosk Anat 91: 200–219

    Article  PubMed  Google Scholar 

  127. Zimmermann H, Whittaker VP (1974) Effect of electrical stimulation on the yield and composition of synaptic vesicles from the cholinergic synapses of the electric organ of Torpedo: a combined biochemical, electrophysiological and morphological study. J Neuro-chem 22: 435–450

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weiss, D.G. (1982). General Properties of Axoplasmic Transport. In: Weiss, D.G., Gorio, A. (eds) Axoplasmic Transport in Physiology and Pathology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85714-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85714-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85716-4

  • Online ISBN: 978-3-642-85714-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics