Skip to main content

Proliferation versus atrophy — the ambivalent role of smooth muscle cells in human atherosclerosis

  • Conference paper
Arteriosclerosis

Summary

Most of the current concepts on morphogenesis of atherosclerosis attribute the development of atherosclerotic lesions to the combined effects of two main cellular events: 1) activation of macrophages leading to lipoprotein phagocytosis by scavenger cells, and 2) proliferation of smooth muscle cells (SMC). SMC-like cells producing collagenous fibers and extracellular matrix are particularly involved in the formation of the so-called fibrous caps surrounding the core of an atheroma composed of foam cells and fatty debris. The fiber-forming SMC, in general, are said to result from a proliferation of media SMC which once have moved into the intima.

This view of origin of the fiber-forming SMC and the alleged proliferation of media SMC is mainly derived from experimental assays exposing the vessel wall to various kinds of physical or chemical injuries. It is the purpose of this paper to demonstrate that the results of those more or less ephemeral experiments differ from findings obtained from a combined histochemical and morphometric analysis of SMC in the aortic media in spontaneous human arteriosclerosis.

Instead of any proliferation, a significant atrophy of SMC occurs in the media with advancing age and progress of atherosclerosis. To some extent, this decrease in numerical and volumetric density of SMC is accompanied with intra- and extracellular calcification. It seems likely that the loss of contractile capacity of the media resulting from wasting of SMC, does slow down the stream of the interstitial fluid in the arterial wall. This stagnation must increase the life span of LDL moving through the interstitial space. The chemical alteration ensuing from aging of LDL mediates its binding to the scavenger receptors and uptake by macrophages.

So far, muscular atrophy of the media forms an atherogenic factor of its own, leading to final results similar to those as known from conditions of intravascular aging of LDL in hyperlipoproteinemia. The augmentation of SMC-like cells in the intima is hardly to be derived from the atrophic media, but rather seems to be due to local proliferation of cells which, in the normal state, do occur in small numbers in the subendothelial space. These so-called myointimal or Langhans-cells share with SMC their content of α-actin, but they differ by their stellate configuration from the bipolar shape SMC of the media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson HC, McGregor DH, Tanimura A (1986) Mechanisms of calcification in atherosclerosis. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York, pp 235–249

    Google Scholar 

  2. Aschoff L (1925) Über die Atherosklerose. In: Vorträge über Pathologie, gehalten an den Universitäten und Akademien Japans im Jahre 1924 von L. Aschoff. Gustav Fischer-Verlag, Jena, pp 62–84

    Google Scholar 

  3. Assmann G (1982) Lipidstoffwechsel und Atherosklerose. Schattauer-Verlag, Stuttgart

    Google Scholar 

  4. Brown MS, Goldstein JL (1984) How LDL receptors influence cholesterol and atherosclerosis. Scientific American 251: 58–66

    Article  PubMed  CAS  Google Scholar 

  5. Brown MS, Goldstein JL (1990) Scavenging for receptors. Nature 343: 508–509

    Article  PubMed  CAS  Google Scholar 

  6. Bürger B (1993) Die altersabhängige Atrophie der glatten Muskelzellen in der Media der Aorta. Eine immunhistochemisch-morphometrische Untersuchung. Inauguraldissertation Freiburg

    Google Scholar 

  7. Bürger M (1939) Die chemischen Altersveränderungen an Gefäßen. Z Neurol Psychol 167: 273–280

    Article  Google Scholar 

  8. Campbell G, Campbell J (1985) Smooth muscle phenotype changes in arterial wall homeos- tatis: implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42: 139–162

    Article  PubMed  CAS  Google Scholar 

  9. Doerr W (1960) Morphologische Untersuchungen zur Entstehung der Aortensklerose. DMW 85: 1401–1405

    Article  Google Scholar 

  10. Doerr W (1978) Arteriosclerosis without end. Principles of pathogenesis and an attempt at a nosological classification. Virchows Arch A Path Anat 380: 91–106

    Article  CAS  Google Scholar 

  11. Doerr W (1989) Über den Krankheitsbegriff — dargestellt am Beispiel der Arteriosklerose. Sitzungsbericht der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwis-senschaftliche Klasse, Jahrgang 1989, 2. Abhandlung, Springer-Verlag, Berlin

    Google Scholar 

  12. Dressel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL-metabolism of the arterial wall — new implications for atherogenesis. Z Kardiol 79: Suppl 3, 9–16

    Google Scholar 

  13. Feigl W (1979) Reaktionsformen der glatten Muskelzelle der menschlichen Arterienwand — ihre Bedeutung für die Atherosklerose. Wiener Med Wschr, Suppl 32: 1–19

    Google Scholar 

  14. Fleckenstein A, Frey M, Zorn J, Fleckenstein-Grün G (1990) Calcium, a neglected key factor in hypertension and arteriosclerosis. Experimental vasoprotection with calcium antagonists or ACE inhibitors. In: Laragh JH, Brenner BM (eds) Hypertension: Pathophysiology, Diagnosis, and Management. Raven Press, New York, chapter 32

    Google Scholar 

  15. Fleckenstein A, Frey M, Thimm F, Fleckenstein-Grün G (1990) Excessive mural calcium overload — a predominant causal factor in the development of stenosing coronary plaques in humans. Cardiovascular Drugs and Therapy 4: 1005–1016

    Article  PubMed  Google Scholar 

  16. Gabbiani G (1986) Cytoskeletal characterization of smooth muscle cells of human and experimental atherosclerotic plaques. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer, New York, pp 63–68

    Google Scholar 

  17. Goldstein JL (1972) The cardiac manifestations of the homozygous and heterozygous forms of familial type II hyperbetalipoproteinemia. Birth Defect 8: 202

    Google Scholar 

  18. Goldstein JL, Brown MS (1977) The low-density lipoprotein pathway and its relationship to atherosclerosis. Ann Rev Biochem 46: 897–930

    Article  PubMed  CAS  Google Scholar 

  19. Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125: 191–207

    PubMed  CAS  Google Scholar 

  20. Hoover GA, McCornick S, Kalant N (1988) Interaction of native and cell-modified low density lipoprotein with collagen gel. Arteriosclerosis 8: 525–534

    Article  PubMed  CAS  Google Scholar 

  21. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedure. J Histochem Cytochem 29: 577–580

    Article  PubMed  CAS  Google Scholar 

  22. Hüttner I, Boutet M, More RH (1973) Studies on protein passage through arterial en-dothelium. I. Structural correlates of permeability in rat arterial endothelium. Lab Invest 288: 672–677

    Google Scholar 

  23. Jonasson L, Horn J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Ar-teriosclerosis 6: 131–138

    CAS  Google Scholar 

  24. Jürgens G, Hoff HF, Chisolm III GM, Esterbauer H (1987) Modification of human serum low density lipoprotein by oxidation - characterization and pathophysiological implications. Chem Phys Lipids 45: 315–336

    Article  PubMed  Google Scholar 

  25. Koch W (1928) Provinzielle Ausbreitung und Charakter der Arteriosklerosen im röntgen- anatomischen Bilde. Verh Dtsch Ges Pathol 23: 478–487

    Google Scholar 

  26. von Kössa J (1901) Ueber die im Organismus künstlich erzeugbaren Verkalkungen. Beitr Pathol Anat Allg Pathol 29: 163–202

    Google Scholar 

  27. Krushinsky AV, Orekov AN, Smirnov VN (1983) Stellate cells in the intima of human aorta. Application of alkaline dissociation method in the analysis of the vessel wall cellular content. Acta Anat 117: 266–269

    Article  PubMed  CAS  Google Scholar 

  28. Langhans Th (1866) Beiträge zur normalen und pathologischen Anatomie der Arterien. Vir- chows Arch Pathol Anat 36: 187–226

    Article  Google Scholar 

  29. Levy R, Lian JB, Gallop P (1979) Atherocalcin, a gamma-carboxylglutamic acid containing protein. Biochem Biophys Res Commun 91: 41–49

    Article  PubMed  CAS  Google Scholar 

  30. Lian JB, Hanschka PV, Gallop PM (1978) Properties and biosynthesis of a vitamin K-de- pendent calcium-binding protein in bone. Fed Proc 37: 2615–2620

    PubMed  CAS  Google Scholar 

  31. Linzbach AJ (1958) Die Bedeutung der Gefäßwandfaktoren für die Entstehung der Ar-teriosklerose. Verh Dtsch Ges Pathol 41: 24–41

    Google Scholar 

  32. McCullagh KG, Ballian G (1975) Collagen charaterization and cell transformation in human atherosclerosis. Nature 258: 73–75

    Article  PubMed  CAS  Google Scholar 

  33. McCullagh KG, Duance VC, Bishop KA (1980) The distribution of collagen types I, III and V(AB) in normal and atherosclerotic human aorta. J Pathol 130: 45–55

    Article  PubMed  CAS  Google Scholar 

  34. Michinson MJ, Carpenter KLH, Ball RY (1986) The role of macrophages in human atherosclerosis. In: Glagow S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque. Springer-Verlag, New York, pp 121–128

    Google Scholar 

  35. Movat HZ, Haust MD, More RH (1959) The morphologic elements in the early lesions of arteriosclerosis. Am J Pathol 35: 93–101

    PubMed  CAS  Google Scholar 

  36. Okuneff N (1926) Über die vitale Farbstoffimbibition der Aortenwand. Virchows Arch Pathol Anat 259: 685–697

    Article  Google Scholar 

  37. Orekov, Karpova II, Tertov W, Rudchenko SA, Andreeva ER, Krushinsky AV, Smirnov VN (1984) Cellular composition of atherosclerotic and uninvolved human aortic suben-dothelial intima. Light-microscopic study of dissociated aortic cells. Am J Pathol 115: 17–24

    Google Scholar 

  38. Orth M, Volk P, Niederhoff H, Böhm N, Sander C (1973) Kardiovaskuläre Xanthomatose im Kindesalter bei primärer Hyperlipoproteinämie Typ II. Med Welt 24: 595–599

    PubMed  CAS  Google Scholar 

  39. Palade GE, Burns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37: 633–649

    Article  PubMed  CAS  Google Scholar 

  40. Pitas RE, Innerarity TL, Maley RW (1983) Foam cells in explants of atherosclerosis rabbit aortas have receptors for ß- very low density lipoproteins and modified low density lipoproteins. Arteriosclerosis 3: 2–12

    Article  PubMed  CAS  Google Scholar 

  41. Risse (1853) Observationes quaedam de arteriarum statu normali atque pathologico. Diss, inaug., Regiomont.

    Google Scholar 

  42. Roessner A, Herrera A, Honing HJ, Vollmer E, Zwaldo G, Schürmann R, Sorg C, Grundmann E (1987) Identification of macrophages and smooth muscle cells with mono-clonal antibodies in the human atherosclerotic plaque. Virchows Arch Pathol Anat A 412: 169–174

    Article  CAS  Google Scholar 

  43. Romeo R, Augstyn JM, Mandel G, Daoud A (1986) Characterization of nucleating pro- teolipids from calcified and non-calcified atherosclerotic lesions. In: Glagov S, Newman WP, Schaffer SA (eds) Pathobiology of the human atherosclerotic plaque, Springer, New York, pp 251–262

    Google Scholar 

  44. Ross R (1986) The pathogenesis of atherosclerosis: An update. New Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  45. Rlihl A (1929) Über die Gangarten der Arteriosklerose. Provinzielle Ausbreitung und Charakter mit besonderer Berücksichtigung des röntgenanatomischen Bildes. Veröff Kriegs-Konstitutionspathol 5: 1–78

    Google Scholar 

  46. Schaefer HE, Assmann G (1980) Bedeutung der Makrophagen für die Genese der Arteriosklerose. Münchener Med Wschr, Suppl 5, 122: 228–238

    Google Scholar 

  47. Schaefer HE (1981) The role of macrophages in atherosclerosis. In: Schmalzl F, Huhn D, Schaefer HE (eds) Disorders of the Monocyte Macrophage System. Pathophysiological and Clinical Aspects, Springer-Verlag, Berlin, Vol 27, pp 121–130

    Google Scholar 

  48. Schaefer HE (1984) Methoden zur histologischen, zytologischen und zytochemischen Diagnostik von Blut und Knochenmark. In: Remmele W (Hrsg) Pathologie, Springer-Verlag Berlin Bd. 1, pp 435–452

    Google Scholar 

  49. Schaefer HE, Bürger B (1992) Immunhistochemische Untersuchungen zur Frage einer altersbedingten Atrophie der glatten Muskelzellen in der Aorta. In: Heinle H, Schulte H, Schaefer HE (Hrsg) Arteriosklerotische Gefäßerkrankungen. 5. Tagung der Deutschen Gesellschaft für Arterioskleroseforschung, Vieweg (Edition Dino; 8), Braunschweig, pp 181–188

    Google Scholar 

  50. Schönfelder M (1969) Orthologie und Pathologie der Langhans-Zellen der Aortenintima des Menschen. Path Microbiol 33: 129–145

    Google Scholar 

  51. Small DM (1980) Summary of concepts concerning the arterial wall and its atherosclerosis lesions. In: Gotto AM, Smith LC, Allen B (eds) Atherosclerosis V., Springer-Verlag, Berlin, pp 520–524

    Google Scholar 

  52. Smith EB (1965) The influence of age and atherosclerosis on the chemistry of aortic intima. 2. Collagen and mucopolysaccharides. J Atheroscler Res 5: 241–248

    Article  PubMed  CAS  Google Scholar 

  53. Smith P, Heath D (1980) The ultrastructure of age-associated intimal fibrosis in pulmonary blood vessels. J Pathol 130: 247–253

    Article  PubMed  CAS  Google Scholar 

  54. Stanley P, Chartaud C, Davignon A (1965) Acquired aortic stenosis in a twelve-year-old girl with xanthomatosis. N Engl J Med 273: 1378–1381

    Article  PubMed  CAS  Google Scholar 

  55. Staubesand J, Seydewitz V (1982) Elektronenmikroskopische Untersuchungen an Koronararterien des Hundes nach Anwendung kardioplegischer und myokardprotektiver Lösungen. In: Just H, Tschirkov A, Schlosser V (Hrsg) Kalziumantagonisten zur Kardio- plegie und Myokardprotektion in der offenen Herzchirurgie. Int. Symp., Breisach 1981. Thieme-Verlag, Stuttgart, pp 165–172

    Google Scholar 

  56. Stein O, Stein Y, Eisenberg S (1973) A radioautographic study of the transport of 125 J- labeled serum lipoproteins in rat aorta. Z Zellforsch 138: 223–237

    Article  PubMed  CAS  Google Scholar 

  57. Steinbrecher UP, Lougheed M, Kwan W-Ch, Dirks M (1989) Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J Biol Chem 264: 15216–15223

    PubMed  CAS  Google Scholar 

  58. Thoma R (1883) Über die Abhängigkeit der Bindegewebsneubildung in der Arterienintima von den mechanischen Bedingungen des Blutumlaufes. Erste Mittheilung. Die Rückwirkung des Verschlußes der Nabelarterien und des arteriösen Ganges auf die Struktur der Aortenwand. Virchows Arch Path Anat Physiol Klin Med 93: 443–506

    Article  Google Scholar 

  59. Wissler RW (1980) The artery wall and the pathogenesis of progressive atherosclerosis. In: Gotto AM, Smith LC, Allen B (eds) Atherosclerosis V. Springer, New York, pp 407–414

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Schaefer, HE. (1994). Proliferation versus atrophy — the ambivalent role of smooth muscle cells in human atherosclerosis. In: Just, H., Hort, W., Zeiher, A.M. (eds) Arteriosclerosis. Steinkopff. https://doi.org/10.1007/978-3-642-85660-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85660-0_5

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85662-4

  • Online ISBN: 978-3-642-85660-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics