Skip to main content

Metabolic causes of myocardial ischemia

  • Conference paper
Book cover Annals of Life Insurance Medicine

Abstract

Among the many metabolic factors involved in the pathogenesis of myocardial ischemia two principal groups may be distinguished:

  1. 1

    Disturbances leading to changes in the coronary arteries and in consequence to impairment of the coronary circulation. The most important alteration is sclerosis of the coronary arteries.

  2. 2

    Primary metabolic disorders of the myocardium, not necessarily involving coronary circulation.

Published in Cardiologia 40, 97–112 (1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Constantinides, P., J. Booth and G. Carlson: Advanced atherosclerosis of the human type in the rabbit: A new experimental tool. Internationales Symposium über „Drugs affecting lipid metabolism“, Mailand, Juni 1960.

    Google Scholar 

  2. Bragdon, J. H.: Transfusion transfer of experimental atherosclerosis. Circulation 4, 466 (1951).

    Google Scholar 

  3. Schrade, W., R. Biegler and E. Böhle: Fatty acid distribution in the lipid fractions of healthy persons of different age, patients with atherosclerosis and patients with idiopathic hyperlipidemia. J. Arteriosclerosis Res. 1, 47 (1961).

    Article  CAS  Google Scholar 

  4. Rutstein, D. D., E. F. Ingenito, J. M. Craig and M. Martinelli: Effects of linolenic and stearic acids on cholesterol-induced lipoid deposition in human aortic cells in tissue culture. Lancet 1, 545 (1958).

    Article  PubMed  CAS  Google Scholar 

  5. Fisher, H., and A. S. Feigenbaum: Essential fatty acids of normal and atherosclerotic aortas from chicken receiving differently saturated fats for three years. Nature 186, 85 (1960).

    Article  PubMed  CAS  Google Scholar 

  6. Gey, K. F., and A. Pletscher: Inability of refined corn oil to influence spontaneous arteriosclerosis of old hens. Nature 189, 491 (1961).

    Article  PubMed  CAS  Google Scholar 

  7. Böttcher, C. J. F., F. P. Woodford, C. Ch. Romeny-Wacher, E. Boelsma-Van Houte and C. M. Van Gent: Fatty acid distribution in lipids of the aortic wall. Lancet 1, 1378 (1960).

    Article  PubMed  Google Scholar 

  8. Böttcher, C. J. F., and C. M. Van Gent: Changes in the composition of phospholipids and of phospholipid fatty acids associated with atherosclerosis in the human aortic wall. J. Arteriosclerosis Res. 1, 36 (1961).

    Article  Google Scholar 

  9. Zilversmit, D. B., and E. L. Mc Candless: Independence of arterial phospholipid synthesis from alterations in blood lipids. J. Lipid Res. 1, 118 (1959).

    CAS  Google Scholar 

  10. Zilversmit, D. B., P. H. Jordan, W. S. Henley and P. F. Ackerman: The synthesis of phospholipids in human atheromatous lesions. Circulation 23, 370 (1961).

    PubMed  CAS  Google Scholar 

  11. Newman, H. A., and D. B. Zilversmit: Origin of various lipids in atheromatous lesions of rabbits. Circulation 20, 967 (1959).

    Google Scholar 

  12. Geer, J. G., H. G. McGill, J. P. Strong and R. L. Holman: Electron microscopy of human atherosclerotic lesions. Fed. Proc. 19, 15 (1960).

    Google Scholar 

  13. Werthessen, N. T., M. A. Nyman, R. L. Holman and J. P. Strong: In vitro study of cholesterol metabolism in the calf aorta. Circulat. Res. 4, 586 (1956).

    PubMed  CAS  Google Scholar 

  14. Schwenk, E., and D. F. Stevens: Deposition of cholesterol in experimental rabbit atherosclerosis. Proc. Soc. exp. Biol. 103, 614 (1960).

    PubMed  CAS  Google Scholar 

  15. Meyer, K.: Struktur und Biologie der Polysaccharidsulfate im Bindegewebe. In: Struktur und Stoffwechsel des Bindegewebes, Symposium an der Med. Universitätsklinik Münster (Westfalen). Stuttgart: Thieme 1959, S. 12.

    Google Scholar 

  16. Gillman, T., M. Hathorn and J. Penn: Micro-anatomy and reactions to injury of vascular elastic membranes and associated polysaccharides. In: Connective Tissue (herausg. R. E. Turnbridge). London: Blackwell 1957, S. 120.

    Google Scholar 

  17. Odeblad, E., and H. Boström: A quantitative autoradiographic study on the uptake of labelled sulphate in the aorta of the rabbit. Acta chem. scand. 7, 233 (1953).

    Article  CAS  Google Scholar 

  18. Kirk, J. E.: Mucopolysaccharides of arterial tissue. In: The Arterial Wall (herausg. A. I. Lansing). Williams and Wilkins Company, 1959, S. 161.

    Google Scholar 

  19. Buck, R. C., and F. C. Heagy: Uptake of radioactive sulphur by various tissues of normal and cholesterol-fed rabbits. Canad. J. Biochem. 36, 63 (1958).

    Article  PubMed  CAS  Google Scholar 

  20. Hilz, H., und D. Usterman: Der Sulfatstoffwechsel der Gefäßwand in Beziehung zur Arteriosklerose und seine Beeinflussung durch Sexualhormone. Biochem. Z. 332, 376 (1960).

    PubMed  CAS  Google Scholar 

  21. Kowalewski, K.: Uptake of radiosulphate by mucopolysaccharides of aorta in cholesterol-fed cockerels. Proc. Soc. exp. Biol. 101, 356 (1959).

    Google Scholar 

  22. Rinehart, J. F., and L. D. Greenberg: Arteriosclerotic lesions in pyridoxine-deficient monkeys. Amer. J. Path. 25, 481 (1949).

    PubMed  CAS  Google Scholar 

  23. Mushett, C. W., and G. A. Emerson: Arteriosclerosis in pyridoxine-deficient monkeys and dogs. Fed. Proc. 15, 526 (1956).

    Google Scholar 

  24. Dyrbye, M. O.: Studies on the metabolism of the mucopolysaccharides of human arterial tissue by means of S35, with special reference to changes related to age. J. Gerontol. 14, 32 (1959).

    PubMed  CAS  Google Scholar 

  25. Raab, W.: The adrenergic-cholinergic control of cardiac metabolism and function. In: Fortschritte der Kardiologie (herausg. R. Hegglin), Vol. 1. Basel: Karger 1956, S. 65.

    Google Scholar 

  26. Gerola, A., H. Feinberg and L. N. Katz: Role of catecholamines on energetics of the heart and its blood supply. Amer. J. Physiol. 196, 394 (1959).

    PubMed  CAS  Google Scholar 

  27. Berne, R. M.: Effect of epinephrine and norepinephrine on coronary circulation. Circulat. Res. 6, 644 (1958).

    PubMed  CAS  Google Scholar 

  28. Szakács, J. E., and A. Cannon: 1-Norepinephrine myocarditis. Amer. J. clin. Path. 30, 425 (1958).

    Google Scholar 

  29. Szakács, J. E., and B. Mehlman: Pathologic changes induced by 1-norepinephrine: quantitative aspects. Amer. J. Cardiol. 5, 619 (1960).

    Article  PubMed  Google Scholar 

  30. Maling, H. M., B. Highman and E. C. Thompson: Some similar effects after large doses of catecholamines and myocardial infarction in dogs. Amer. J. Cardiol. 5, 628 (1960).

    Article  PubMed  CAS  Google Scholar 

  31. Melville, K. I., and H. E. Shister: Cardiac responses to epinephrine and norepinephrine during prolonged cholesterol and high fat feeding in rabbits. Amer. J. Cardiol. 4, 391 (1959).

    Article  CAS  Google Scholar 

  32. Gazes, P. C., J. A. Richardson and E. F. Woods: Plasma catecholamine concentrations in myocardial infarction and angina pectoris. Circulation 19, 657 (1959).

    PubMed  CAS  Google Scholar 

  33. Kako, K., J. D. Choudhury and R. J. Bing: Possible mechanism of the decline in mechanical efficiency of the isolated heart. J. Pharmacol. exp. Therap. 130, 46 (1960).

    CAS  Google Scholar 

  34. Danforth, H., F. B. Ballard, K. Kako, J. D. Choudhury and R. J. Bing: Metabolism of the heart in failure. Circulation 21, 112 (1960).

    PubMed  CAS  Google Scholar 

  35. Kako, K., A. Chrysohou and R. J. Bing: Storage of catecholamines in the heart. Effect of amine oxidase inhibitors. Circulation Res. 9, 295 (1961).

    PubMed  CAS  Google Scholar 

  36. Pletscher, A., K. F. Gey und P. Zeller: Monoaminoxydase-Hemmer: Chemie, Biochemie, Pharmakologie, Klinik. In: Fortschritte der Arzneimittelforschung (herausg. E. Jucker), Vol. 2. Basel: Birkhäuser 1960, S.417.

    Google Scholar 

  37. Zbinden, G.: Inhibition of experimental myocardial necrosis by the monoamine oxidase inhibitor isocarboxazid (Marplan). Amer. Heart J. 60, 450 (1960).

    Article  Google Scholar 

  38. Selye, H.: Elektrolyte, Stress und Herznekrose. Basel: Benno Schwabe & Co. 1960.

    Google Scholar 

  39. Melville, K. I., and B. Korol: Cardiac drug responses and potassium shifts. Studies on the interrelated effects of drugs on coronary flow, heart action and cardiac potassium movement (part I and II). Amer. J. Cardiol. 2, 81, 189 (1958).

    Article  PubMed  CAS  Google Scholar 

  40. Pletscher, A.: Einfluß von Isopropyl-isonikotinsaurehydrazid auf den Katecholamingehalt des Myokards. Experientia 14, 73 (1958).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag OHG Berlin · Göttingen · Heidelberg

About this paper

Cite this paper

Pletscher, A. (1962). Metabolic causes of myocardial ischemia. In: Annals of Life Insurance Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85611-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85611-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85613-6

  • Online ISBN: 978-3-642-85611-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics