Adalat pp 180-196 | Cite as

Potential Biochemical Mechanisms of the Antiatherogenic Properties of Calcium Antagonists

  • G. Schmitz
  • J. Hankowitz
  • E. M. Kovacs
Conference paper


Atherosclerosis may be defined as an intimal disorder of the vessel well which is associated with endothelial damage, infiltration of mononuclear phagocytes, subendothelial lipid and Ca++ accumulation, intimal smooth muscle cell (SMC) proliferation, and disturbances in platelet function and fibrinolysis (Fig. 1). The maintenance of endothelial integrity is one of the most important points for the prevention of atherosclerosis, and the “modified response to injury” hypothesis (Ross 1986, 1990) provides a plausible explanation, where atherosclerosis appears to be initiated by alterations of the endothelial cells. At the stage of an early lesion, the dysfunction of endothelial cells in response to irritating stimuli such as hypercholesterolemia, immune activation, hypertension, anoxia, or turbulent blood flow without morphological signs of endothelial denudation seems to be a major event (Nilsson 1986). The irritated endothelial cells respond with an increase in permeability for lipoproteins into the subendothelial space, which is associated with a massive infiltration of blood monocytes and an enhanced endothelial cell replication. In the subendothelium, monocytes differentiate into tissue macrophages, which ingest large amounts of cholesterol leading to foam cell formation in the intimal layer of the vessel wall (Gerrity 1981). At this stage macrophages secrete factors which are chemotactic and mitogenic for vascular SMC.


Calcium Antagonist Cholesteryl Ester Lamellar Body Nucleoside Transporter Lecithin Cholesterol Acyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akopov SE, Orekhov AN, Tertov W, Khashimov KA, Gabrielyan ES, Smirnov VN (1988) Stable analogues of prostacyclin and thromboxane A2 display contradictory influences on atherosclerotic properties of cells cultured from human aorta: the effect of calcium antagonists. Atherosclerosis 72 (2–3):245–248PubMedCrossRefGoogle Scholar
  2. Baldenkov GN, Akopov SE, Ryong LH, Orekhov AN (1988) Prostacyclin, thromboxane A2 and calcium antagonists: effects on atherosclerotic characteristics of vascular cells. Biomed Biochim Acta 47(10–11):324–327Google Scholar
  3. Besman MJ, Yanagibashi K, Lee TD, Kawamura M, Hall PF, Shively JE (1989) Identification of des-(Gly-Ile)-endozepine as an effector of corticotropin-dependent adrenal steroidogenesis: stimulation of cholesterol delivery is mediated by the peripheral benzodiazepine receptor. Proc Natl Acad Sci USA 86:4897–4901PubMedCrossRefGoogle Scholar
  4. Block LH, Emmons LR, Vogt E, Sachinidis A, Vetter W, Hoppe J (1989) Ca++-channel lockers inhibit the action of recombinant platelet-derived growth factor in vascular smooth muscle cells. Proc Natl Acad Sci USA 86:2388–2392PubMedCrossRefGoogle Scholar
  5. Boeynaems JM, Pearson JD (1980) P2 purinoceptors on vascular endothelial cells: physiological significance and transduction mechanisms. TIPS 11:64–67Google Scholar
  6. Brown AM, Birnbaumer L (1988) Direct G protein gating of ion channels. Am J Physiol 254:H401–H410PubMedGoogle Scholar
  7. Brown MS, Goldstein JL (1990) Scavenging for receptors. Nature 343:508–509PubMedCrossRefGoogle Scholar
  8. Brown MS, Ho YK, Goldstein JL (1980) The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 255:9344–9349PubMedGoogle Scholar
  9. Burridge K, Molony L, Kelly T (1987) Adhesion plaques: sites of transmembrane and interaction between the extracellular matrix and the actin cytoskeleton. J Cell Sci [Suppl] 8:211–229Google Scholar
  10. Cantor EH, Kenessy A, Semenuk G, Spector S (1984) Interaction of calcium channel blockers with non-neuronad benzodiazepine binding sites. Proc Natl Acad Sci USA 81:1549–1552PubMedCrossRefGoogle Scholar
  11. Carter TD, Hallam TJ, Cusack NJ, Pearson JD (1988) Regulation of P2y-purinoreceptor mediated prostacyclin release from human endothelial cells by cytoplasmic calcium concentration. Br J Pharmacol 95:1181–1190PubMedCrossRefGoogle Scholar
  12. Cheung WT, Shi MM, Young JD, Lee CM (1987) Inhibition of radioligand binding to A1 adenosine receptors by Bay K 8644 and nifedipine. Biochem Pharmacol 36:2183–2186PubMedCrossRefGoogle Scholar
  13. Clowes AW, Schwartz SM (1985) Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ Res 56:139–145PubMedCrossRefGoogle Scholar
  14. Daugherty A, Raten DL, Schonffeld G, Sobel BE (1987) Inhibition of cholesteryl ester deposition in macrophages by calcium entry blockers: an effect dissociable from calcium entry blockade. Br J Pharmacol 33:2377–2382Google Scholar
  15. Dietrich JW, Duffield R (1979) Effects of the calcium antagonist verapamil on in vitro synthesis of skeletal collagen and non-collagen proteins. Endocrinology 105:1168–1172PubMedCrossRefGoogle Scholar
  16. Etingin OR, Hajjar DJ (1985) Nifedipine increases cholesteryl ester hydrolytic activity in lipid-laden arterial smooth muscle cells. J Clin Invest 75:1554–1558PubMedCrossRefGoogle Scholar
  17. Etingin OR, Hajjar DJ (1990) Calcium channel blockers enhance cholesteryl ester hydrolysis and decrease total cholesterol accumulation in human aortic tissue. Circ Res 66(1): 185–190PubMedCrossRefGoogle Scholar
  18. Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate, Part 1 and Part 2. Arteriosclerosis 4:323 and 341PubMedCrossRefGoogle Scholar
  19. Ferri C, de Angelis C, del Porto MA, Leonetti-Luparini R, Giarrizzo C, Santucci A, Balsano F (1988) Effect of nicardipine on angiotensin II platelet content. J Hypertens [Suppl] 6(1):117–119Google Scholar
  20. Fleckenstein A, Frey M, Zorn J, Fleckenstein-Grün G (1987) The role of calcium in the pathogenesis of experimental arteriosclerosis. TIPS 8:496–501Google Scholar
  21. Fritschka E, Kribben A, Distler A, Philipp T (1987) Inhibition of aggregation and calcium influx of human platelets by nifedipine. J Cardiovasc Pharmacol 9:985–989CrossRefGoogle Scholar
  22. Frostegard J, Nilsson J, Haegerstrand A, Hamsten A, Wigzell H, Gidlund M (1990) Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937. Proc Natl Acad Sci USA 87:904–908PubMedCrossRefGoogle Scholar
  23. Furchgott RF, VanHoutte PM (1989) Endothelium derived relaxing and contracting factors. FASEB J 3 (9):2007–2018PubMedGoogle Scholar
  24. Gerrity RG (1981) The role of the monocyte in atherogenesis. Am J Pathol 103:181–191PubMedGoogle Scholar
  25. Gleerup G, Winther K (1989) Differential effects of non-specific beta-blockade and calcium antagonism on blood-clotting mechanism. Am J Med 86:127–129PubMedCrossRefGoogle Scholar
  26. Gonzalez-Gronow M, Edelberg JM, Pizzo SU (1989) Further characterization of the cellular plasminogen binding site: evidence that plasminogen and lipoprotein (a) compete for the same site. Biochemistry 28:2374–2377PubMedCrossRefGoogle Scholar
  27. Gottesman M, Pastan I (1988) The multidrug transporter, a double-edged sword. J Biol Chem 263:12163–12166PubMedGoogle Scholar
  28. Grodzinska L, Basista M, Slawinski M, Swies J, Stachura J, Ohlrogge R (1989) Nifedipine stimulated release of prostacyclin-like substance in normal and atherosclerotic animals. Arzneimittelforschung 37:412–415Google Scholar
  29. Grulich-Henn J, Müller-Berghaus G (1989) The role of vascular endothelial cells in the regulation of fibrinolysis. Z Kardiol 78:25–29PubMedGoogle Scholar
  30. Habenicht AJR, Glomset JA, King WC, Nist C, Mitchell CD, Ross R (1981) Early changes in phosphatidylinositol and arachidonic acid metabolism in quiescent Swiss 3T3 cells stimulated to divide by platelet-derived growth factor. J Biol Chem 256:12329–12335PubMedGoogle Scholar
  31. Hajjar KA, Gavish D, Breslow JL, Nachman RL (1989) Lipoprotein (a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature 339:303–305PubMedCrossRefGoogle Scholar
  32. Hallam TJ, Pearson JD, Needham LA (1988) Thrombin stimulated elevation of human endothelial cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J 251:243–249PubMedGoogle Scholar
  33. Heider JG, Weinstein DB, Ickens CE, Lan S, Su CM (1987) Anti-atherogenic activity of the calcium channel blocker isradipine (PN 200–110): a novel effect on matrix synthesis independent of calcium channel blockade. Transplant Proc 29 [Suppl 5]:96–101Google Scholar
  34. Herbette LG, Erve Y, Rhodes DG (1989) Interaction of 1,4 dihydropyridine calcium channel antagonists with biological membranes: lipid bilayer partitioning could occur before drug binding to receptor. J Mol Cell Cardiol 21:187–201PubMedCrossRefGoogle Scholar
  35. Houdjik WPM, de Groot PG, Nievelstein PFEM, Sakariassen KS, Sixma JJ (1986) Von Wille-brand factor and fibronectin but not thrombospondin are involved in platelet adhesion to the extracellular matrix of human vascular endothelial cells. Atherosclerosis 6:24–33Google Scholar
  36. Janero DR, Burghardt B, Lopez R (1988) Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochem Pharmacol 37:4197–4203PubMedCrossRefGoogle Scholar
  37. Johnsson H (1981) Effects by nifedipine on platelet function in vitro and in vivo. Thromb Res 21:523–528PubMedCrossRefGoogle Scholar
  38. Jonzon B, Nilsson J, Fredholm BB (1985) Adenosine receptor-mediated changes in cyclic AMP production and DNA synthesis in cultured arterial smooth muscle cells. J Cell Physiol 124:451–455PubMedCrossRefGoogle Scholar
  39. Kiyomoto A, Sasaki J, Odawara A, Morta T (1983) Inhibition of platelet aggregation by diltiazem. Circ Res 52:115–119Google Scholar
  40. Kodama T, Freeman M, Rohrer L, Zabreczky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains a-helical and collagen-like coiled coils. Nature 343:531–535PubMedCrossRefGoogle Scholar
  41. Kraemer FB, Tavangar K, Gandjei RK, Kilrew, Behr SR (1990) Effects of activation on lipid and lipoprotein metabolism in murine macrophages. Arteriosclerosis 10:8–16PubMedCrossRefGoogle Scholar
  42. Kugiyama K, Kerns SA, Morrisett JG, Roberts R, Henry PD (1990) Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 344:160–162PubMedCrossRefGoogle Scholar
  43. Levin EG, Marotti KR, Santell L (1989) Protein kinase C and stimulation of tissue plasminogen activator release from human endothelial cells. J Biol Chem 263:16030–16036Google Scholar
  44. Löns Ziegler-Heitbrock, HW (1989) The biology of the monocyte system. Eur J Cell Biol 49:1–12Google Scholar
  45. Mak IT, Weglicki WB (1990) Comparative antioxidant activities of propranolol, nifedipine, verapamil and diltiazem against sarcolemmal membrane lipid peroxidation. Circ Res 66:1449–1452PubMedCrossRefGoogle Scholar
  46. Mantione CR, Goldman ME, Martin B, Bolger GT, Luddens HW (1988) Purification and characterization of an endogenous protein modulator of radioligand binding to “peripheral type” benzodiazepine receptors and dihydropyridine CA++-channel binding sites. Biochem Pharmacol 37:339–347PubMedCrossRefGoogle Scholar
  47. McLean JW, Tomlinson JE, Kuang WJ, Eaton DL, Chen EY, Flers GM, Scann AM, Lawn RM (1987) cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature 300:132–134CrossRefGoogle Scholar
  48. Metha J, Metha P, Ostrowski N, Crews F (1983) Effects of verapamil on platelet aggregation, ATP release and thromboxane generation. Thromb Res 30:469–475CrossRefGoogle Scholar
  49. Metha J, Metha P, Ostrowski N (1986) Calcium blocker diltiazem inhibits platelet activation and stimulates vascular prostacyclin synthesis. Am J Med Sci 291:20–24CrossRefGoogle Scholar
  50. Moncada S, Radomski MW (1985) The problems and promise of prostaglandin influence in atherogenesis. Ann NY Acad Sci 454:121–129PubMedCrossRefGoogle Scholar
  51. Nakao J, Ooyama T, Chang WC, Churota S, Orimo H (1983) Platelets stimulate aortic smooth muscle cell migration in vitro — Involvement of 12-L-hydroxy-5,8,10,14,-eicosatetranoic acid. Atherosclerosis 43:143–151CrossRefGoogle Scholar
  52. Nilsson J (1986) Growth factors and the pathogenesis of atherosclerosis. Atherosclerosis 62:185–199PubMedCrossRefGoogle Scholar
  53. Nilsson J, Sjölund M, Palmberg L, Von Euler AM, Jonzon B, Thyberg J (1985) The calcium antagonist nifedipine inhibits arterial smooth muscle cell proliferation. Atherosclerosis 58:109–122PubMedCrossRefGoogle Scholar
  54. Nomoto A, Mutoh S, Hagihara H, Yamaguchi I (1988) Smooth muscle cell migration induced by inflammatory cell products and its inhibition by a potent calcium antagonist, nivaldipine. Atherosclerosis 72:213–219PubMedCrossRefGoogle Scholar
  55. Ondrias K, Misik V, Gerbel D, Stasko A (1989) Lipid peroxidation of phosphatidylcholine liposomes depressed by calcium channel blockers nifedipine and verapamil and by the anti-arrhythmic-antihypoxic drug stobadine. Biochim Biophys Acta 1003:238–245PubMedCrossRefGoogle Scholar
  56. Orekhov AN, Tertov W, Khashimov KA, Kudryashov SA, Smirnov VN (1986) Antiatherosclerotic effects of verapamil in primary culture of human aortic intimai cells. J Hypertens 4 [Suppl 6]:153–155Google Scholar
  57. Orekhov AN, Baldenkov GN, Tertov W, Ryong LH, Kozlov SG, Lyakishev AA, Tkachuk VA, Ruda MY, Smirnov VN (1988) Cardiovascular drugs and atherosclerosis: effects of calcium antagonists, beta-blockers and nitrates on atherosclerotic characteristics of human aortic cells. J Cardiovasc Pharmacol 12 [SuppI 6]:566–568CrossRefGoogle Scholar
  58. Parthasarathy S, Steinbrecher UP, Barnett J, Witzum JL, Steinberg D (1985) Essential role of phospholipase A activity in endothelial-induced modification of low density lipoprotein. Proc Natl Acad Sci USA 82:3000–3004PubMedCrossRefGoogle Scholar
  59. Parthasarathy S, Wieland E, Steinberg D (1989) A role of endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86:1046–1050PubMedCrossRefGoogle Scholar
  60. Pennington JE, Kemmerich B, Kazanjian PH, March JD, Boerth LW (1986) Verapamil impairs human neutrophil Chemotaxis by a non calcium mediated mechanisms. J Lab Clin Med 108:44–52PubMedGoogle Scholar
  61. Phair RD (1988) Cellular calcium and atherosclerosis: a brief review. Cell Calcium 9(5–6):275–284PubMedCrossRefGoogle Scholar
  62. Quinn MT, Parthasarathy S, Steinberg D (1985) Endothelial cell-derived chemotatic activity for mouse peritoneal macrophages and the effect of modified forms of low density lipoprotein. Proc Natl Acad Sci USA 82:5949–5953PubMedCrossRefGoogle Scholar
  63. Raines EW, Dower SK, Ross R (1989) Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243:393–396PubMedCrossRefGoogle Scholar
  64. Rampe D, Triggle DJ (1986) Benzodiazepines and calcium channel function. TIPS 11:461–466Google Scholar
  65. Ritchie DG, Fuller GM (1983) Hepatocyte stimulating factor: a monocyte-derived acutephase regulatory protein. Ann NY Acad Sci 408:490–502PubMedCrossRefGoogle Scholar
  66. Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570–572PubMedCrossRefGoogle Scholar
  67. Ross R (1986) The pathogenesis of atherosclerosis-an update. N Engl J Med 314:488–500PubMedCrossRefGoogle Scholar
  68. Ross R (1990) Mechanisms of atherosclerosis-a review. Adv Nephrol 19:79–86Google Scholar
  69. Rowland FN, Donovan MJ, Picciano PT (1984) Fibrin mediated vascular! injury. Identification of fibrin peptides that mediate endothelial cell reaction. Am J Pathol 117:418–428PubMedGoogle Scholar
  70. Schmitz G, Robenek H, Beuck M, Krause R, Schurek A, Niemann R (1988) Ca++-antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms: I. Characterization of cellular lipid metabolism. Arteriosclerosis 8:46–56PubMedCrossRefGoogle Scholar
  71. Schmitz G, Beuck M, Kerckhoff C, Rasmussen JT, Spener F, Knudsen J (1991) Acyl-CoA binding protein (ACBP) which is identical to endozepine and diazepam binding inhibitor (DBI) regulates acyl-CoA: cholesterol acyltransferase (ACAT): evidence for a mechanism of ACAT-inhibition by diazepam. J Biol Chem (submitted)Google Scholar
  72. Schör K (1989) Plättchenhyperreaktivität und Arachidonsäurestoffwechsel in der Atherosklerose. Calciumantagonisten und Atherosklerose, Medikon, München:21–36Google Scholar
  73. Senegelov H, Winther K (1989) Effect of felodipine, a new calcium channel antagonist, on platelet function and fibrinolytic activity at rest and after exercise. Eur J Clin Pharmacol 37:453–457CrossRefGoogle Scholar
  74. Shi B, Tien HT (1986) Action of calcium channel and beta-adrenergic blocking agents in bilayer lipid membranes. Biochim Biophys Acta 859:123–134Google Scholar
  75. Shiridi F, Robal J (1986) The influence of calcium channel blockers on superoxide anions. Pharm Res Commun 20(1):13–21CrossRefGoogle Scholar
  76. Stasch JP, Kazda (1989) Endothelin-1 induced vascular contractions: Interactions with drugs affecting the calcium channel. J Cardiol Pharmacol 13 [Suppl 5]:561–566Google Scholar
  77. Stein O, Stein Y (1987) Effect of verapamil on cholesteryl ester hydrolysis and reesterification in macrophages. Arteriosclerosis 7:578–584PubMedCrossRefGoogle Scholar
  78. Stein O, Halperin G, Stein Y (1987) Long-term effects of verapamil on aortic smooth muscle cells cultured in the presence of hypercholesterolemic serum. Arteriosclerosis 7:585–592PubMedCrossRefGoogle Scholar
  79. Stein O, Leitersdorf E, Stein Y (1985) Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis 5:35–44PubMedCrossRefGoogle Scholar
  80. Steinberg D, Parthasarthy S, Carew TE, Khoo JC, Witzum JL (1989) Beyond cholesterol. Modification of low-density lipoprotein that increases its atherogenecity. N Engl J Med 320:915–924PubMedCrossRefGoogle Scholar
  81. Striessnig J, Goll A, Moosburger K, Glossmann H (1986) Purified calcium channels have three allosterically coupled drug receptors. FEBS Lett 197:204–210PubMedCrossRefGoogle Scholar
  82. Strohschneider T, Betz E (1989) Densiometric measurment of increased endothelial permeability in arterosclerotic plaques and inhibition of permeability under the influence of two calcium antagonists. Atherosclerosis 75(2–3):135–144PubMedCrossRefGoogle Scholar
  83. Takahasi M, Seagar MJ, Jones JF, Reber BFX, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482CrossRefGoogle Scholar
  84. Tedgui A, Chiron B, Curmi P (1987) Effect of nicardipine and verapamil on in vitro albumin transport in rabbit thoracic aorta. Arteriosclerosis 7:80–87PubMedCrossRefGoogle Scholar
  85. Vane JR, Gryglewski RJ, Botting RM (1987) The endothelial cell as a metabolic and endocrine organ. TIPS 8:491–496Google Scholar
  86. VanHoutte PM (1988) Ca++-antagonists and vascular disease. Ann NY Acad Sei 522:380–389CrossRefGoogle Scholar
  87. Verma A, Snyder SH (1989) Peripheral type benzodiazepine receptors. Annu Rev Pharmacol Toxicol 29:307–322PubMedCrossRefGoogle Scholar
  88. Weinstein DB, Heider J (1987) Antiatherogenic properties of calcium antagonists. Am J Cardiol 59:163B–172BPubMedCrossRefGoogle Scholar
  89. Weiss K (1988) Calcium antagonists: anti-atherosclerotic effect by modification of the prostaglandin system. Wien Klin Wochenschr 21:718–720Google Scholar
  90. Wight TN (1989) Cell biology of arterial proteoglycans. Arteriosclerosis 9:1–20PubMedCrossRefGoogle Scholar
  91. Williamson KC, Tauber Al, Navarro J (1987) Nisoldipine inhibits formyl-methionyl-leucyl-phenylalanine receptor-coupled calcium transport in human neutrophils. J Leukocyte Biol 42:239–244PubMedGoogle Scholar
  92. Winther K (1990) Scandinavian Adalate Conference, CopenhagenGoogle Scholar
  93. Winther K, Warberg J, Knigge U (1988) The effect of intrinsic sympathomimeticl activity on platelet aggregation and fibrinolytic activity. Curr Opin Cardiol 3 [Suppl 2]: 129–131CrossRefGoogle Scholar
  94. Yatsu FM, Alam R, Alam SS (1985) Enhancement of cholesteryl ester metabolism in cultured human monocyte-derived macrophages by verapamil. Biochim Biophys Acta 847:77–81PubMedCrossRefGoogle Scholar
  95. Zernig G (1990) Widening potential for Ca++ antagonists: non-L-type Ca++ channel interaction. TIPS 11:38–44PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • G. Schmitz
  • J. Hankowitz
  • E. M. Kovacs

There are no affiliations available

Personalised recommendations