Inhibitors of monoamine oxidase and decarboxylase of aromatic amino acids

  • A. Pletscher
  • K. F. Gey
  • W. P. Burkard
Part of the Handbook of Experimental Pharmacology/Handbuch der experimentellen Pharmakologie book series (HEP, volume 19)

Abstract

In recent years it has become evident that pharmacological interference with the metabolism of monoamines might be of therapeutic value in certain diseases. Inhibition of the enzymes responsible for the formation and degradation of biogenic monoamines has been an approach for creating new drugs. So far inhibitors of monoamine oxidase (MAO) and decarboxylase of aromatic L-amino acids (DCA), enzymes involved in the degradation and formation respectively of monoamines, have got therapeutic importance. This development is closely connected with the research on the metabolism of aromatic amines which progresses rapidly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves, J., P. Pulido, and R. Mendez: The comparative action of Marsilid and its derivative Tersavid upon the cardiovascular system. Cardiologia (Basel) 37, Suppl. II, 29 (1960).Google Scholar
  2. Acheson, R. M., J. Cole, D. P. Dearnaley, and E. J. Dearnaley: Attempted correlations between behavioural and biochemical changes in rats following reserpine and chronic administration of amine-oxydase inhibitors. Psychopharmacologia (Berl.) 2, 277 (1961a).Google Scholar
  3. Acheson, R. M., J. Cole, D. P. Dearnaley, and P. Glees: Some effects on perfomance and behaviour of the daily administration of amine oxidase inhibitors in trained rats. In: Neuropsychopharmacology, vol. 2, p. 139, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961b.Google Scholar
  4. Acheson, R. M., J. Cole, D. P. Dearnaley, and P. Glees: Changes in aromatic excretion pattern of rats during chronic administration of amine oxidase inhibitors. In: Neuropsychopharmacology, vol. 2, p. 455, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961c.Google Scholar
  5. Ackermann, D.: Ein Fäulnisversuch mit Arginin. Hoppe-Seylers Z. physiol. Chem. 56, 305 (1908).Google Scholar
  6. Ackermann, D.: Ueber den bakteriellen Abbau des Histidins. Hoppe-Seylers Z. physiol. Chem. 65, 504 (1910a).Google Scholar
  7. Ackermann, D.: Ueber ein neues, auf bakteriellem Wege gewinnbares, Aporrhegma. Hoppe-Seylers Z. physiol. Chem. 69, 273 (1910b).Google Scholar
  8. Ackermann, D., u. H. Laxgemann: Aminosäuren-Decarboxylase im menschlichen Gehirn. Helv. physiol. pharmacol. Acta 18, C 5 (1960).Google Scholar
  9. Adams-Ray, J., A. Dahlström, K. Fuxe, and N.-Å. Hillarp: Mast cells and monoamines. Experientia (Basel) 20, 80 (1964).Google Scholar
  10. Aebi, H.: Mitochondrial structure as a controlling factor of monoamine oxidase activity and the action of monoamine oxidase inhibitor. Biochem. Pharmacol. 9, 135 (1962).PubMedGoogle Scholar
  11. Aebi, H., J. Quitt u. A. Hassan: Uricase, Xanthinoxydase und Monoaminoxidase als H2O2-Donoren peroxydatischer Umsetzungen. Helv. physiol. pharmacol. Acta 20, 148 (1962a).PubMedGoogle Scholar
  12. Aebi, H. F. Stocker u. M. Eberhardt: Abhängigkeit der Monoaminoxydase-Aktivität und peroxydatischen Umsetzungen von der Mitochondrienstruktur. Biochem. Z. 336, 526 (1962b).Google Scholar
  13. Agin, H. V.: The use of JB-516 in psychiatry. Ann. N. Y. Acad. Sci. 80, 705 (1959).PubMedGoogle Scholar
  14. Airaksinen, M. M., and V. J. Uuspää: IS urinary 5-hydroxytrvptamine formed in the kidney? Biochem. Pharmacol. 8, 46 (1961).Google Scholar
  15. Aksel, I. S.: Die antidepressiven Drogen und ihre Wirkung auf den Glukosestoffwechsel. Wien. med. Wschr. 110, 713 (1960).PubMedGoogle Scholar
  16. Albert, A., and C. W. Rees: The destruction of isonicotonic acid hydrazide in the presence of haemin. Biochem. J. 61, 128 (1955).PubMedGoogle Scholar
  17. Alexander, L.: Objective evaluation of antidepressant therapy by conditional reflex technique. Dis. nerv. Syst. 22, Suppl. 5, 14 (1961).PubMedGoogle Scholar
  18. Alexander, L., and S. R. Horner: The effect of drugs on the conditional psychogalvanic reflex in man. J. Neuropsychiat. 2, 246 (1961).PubMedGoogle Scholar
  19. Alexander, L., and S. R. Lipsett: Effect of amine. oxidase inhibitors on the conditional psychogalvanic reflex in man. Dis. nerv. Syst. 20, Suppl. 26 (1959).PubMedGoogle Scholar
  20. Allegretti, N., and D. Vukadinovič: Atebrin inhibition of the oxidation of adrenaline by monoamine oxidase. Arh. Kem. (Zagreb) 22, 191 (1950).Google Scholar
  21. Alles, G. A., and E. V. Heegard: Substrate specificity of amine oxidase. J. biol. Chem. 147, 487 (1943).Google Scholar
  22. Alleva, J. J.: Metabolism of tranylcypromine-C14 and dl-amphetamine-C14 in the rat. J. med. Chem. 6, 621 (1963).PubMedGoogle Scholar
  23. Allmark, M. G., F. C. Lu, E. Carmichael, and A. Lavallee: Some pharmacological observations on isoniazid and iproniazid. Amer. Rev. Tuberc. 68, 199 (1953).Google Scholar
  24. Ammann, A., and E.G. Anderson: The neuromyal blocking action of the monoamine oxidase inhibitors. Pharmacologist 3, 73 (1961).Google Scholar
  25. Andén, N.-E.: On the mechanism of noradrenaline depletion by α-methyl metatyrosine and metaraminol. Acta pharmacol. (Kbh.) 21, 260 (1964).Google Scholar
  26. Andén, N.-E. T. Magnusson, and E. Rosengren: On the presence of dihydroxyphenylalanine decarb-oxylase in nerves. Experientia (Basel) 20, 328 (1964).Google Scholar
  27. Andén, N.-E. B.-E. Roos, and B. Werdinius: On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sci. 2, 448 (1963a).Google Scholar
  28. Andén, N.-E. B.-E. Roos, and B. Werdinius: 3,4-Dihydroxyphenylacetic acid in rabbit corpus striatum normally and after reserpine pretreatment. Life Sci. 2, 319 (1963b).Google Scholar
  29. Andén, N.-E. B.-E. Roos, and B. Werdinius: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149 (1964b).Google Scholar
  30. Anderejew, A., C. Gernez-Rieux et A. Tacquet: Action de l’INH et de la D-cyclosérine sur la peroxydase purifiée et sur l’activité peroxydasique des bacilles tuberculeux. Ann. Inst. Pasteur 96, 145 (1959).Google Scholar
  31. Anderson, C. T., H. Blaschko, J. H. Burn, and R. A. Mole: The pressor amines in the adrenal medulla after irradiation. Brit. J. Pharmacol. 6, 342 (1951).PubMedGoogle Scholar
  32. Anderson, E. G.: Monoamine oxidase inhibitors and neuromyal block. Pharmacologist 1, 82 (1959).Google Scholar
  33. Anderson, E. G., and A. Ammann: The effects of monoamine oxidase inhibitors on neuromyal transmission. J. Pharmacol. exp. Ther. 140, 179 (1963).PubMedGoogle Scholar
  34. Anderson, E. G., and L. Berk: The effects of some monoamine oxidase (MAO) inhibitors on spinal synaptic activity. Fed. Proc. 23, 248 (1964).Google Scholar
  35. Anderson, E. G., S. D. Markowitz, and D. D. Bonnycastle: Brain 5-hydroxytryptamine and anticon-vulsant activity. J. Pharmacol. exp. Ther. 136, 179 (1962).PubMedGoogle Scholar
  36. Anderson, F. E., D. Kaminski, B. Dubnick, S. R. Klutchko, W. A. Cetenko, J. Gylys, and J. A. Hart: Chemistry and pharmacology of monoamine oxidase inhibitors: hydra-zine derivatives. J. med. pharm. Chem. 5, 221 (1962).Google Scholar
  37. Anderson, J. A., M. R. Ziegler, and D. Doeden: Banana feeding and urinary excretion of 5-hydroxy-indoleacetic acid. Science 127, 236 (1958).PubMedGoogle Scholar
  38. Angelakos, E. T., and E. R. Low: Histamine toxicity in mice and rats following treatment with histaminase inhibitors. J. Pharmacol. exp. Ther. 119, 444 (1957).PubMedGoogle Scholar
  39. Angelakos, E. T., and E. R. Low: Influence of histaminase inhibitors on certain pharmacological effects of histamine. Arch. int. Pharmacodyn. 117, 277 (1958).PubMedGoogle Scholar
  40. Aprison, M. H., and C. B. Ferster: Neurochemical correlates of behavior. II. Correlation of brain monoamine oxidase activity with behavioural changes after iproniazid and 5-hydro-xytryptophan administration. J. Neurochem. 6, 350 (1961).PubMedGoogle Scholar
  41. Aprison, M. H., R. Takahashi, and T. L. Folkerth: Biochemistry of the avian central nervous system.— I. The 5-hydroxytryptophan decarboxylase-monoamine oxidase and cholineacetylase-acetylcholinesterase systems in several discrete areas of the pigeon brain. J. Neurochem. 11, 341 (1964).PubMedGoogle Scholar
  42. Arai, A.: Studies on monoamine oxidase, report 2: p-methyl-phenyl hydrazine, a potent and selective monoamine oxidase inhibitor. Jap. J. Pharmacol. 9, 159 (1960).PubMedGoogle Scholar
  43. Arai, A., Y. Ozawa, H. Wakamatsu, T. Takiuchi, T. Fujimaki, and K. Kamijo: Influence of p-methylphenyl hydrazine (MPH) on the peripheral blood vessel of rabbit. Showa Igak-kai Zasshi 21, 265 (1961). [Psychopharmacologia (Berl.) Abstr. 1, 546 (1961).]Google Scholar
  44. Arai, Y.: Critical studies on the significance of serotonin in the mechanism of anaphylaxis. II. The changes in serotonin level and monoamine oxidase activity in the tissue after anaphylactic shock. Arerugi 12, 380 (1963) [Chem. Abstr. 59, 3553d (1964)].PubMedGoogle Scholar
  45. Arioka, I., and H. Tanimukai: Histochemical studies on monoamineoxidase in the mid-brain of the mouse. J. Neurochem. 1, 311 (1957).PubMedGoogle Scholar
  46. Armin, J., R. T. Grant, R. H. S. Thompson, and A. Tickner: An explanation for the heightened vascular reactivity of the denervated rabbit’s ear. J. Physiol. (Lond.) 121, 603 (1953).Google Scholar
  47. Armstrong, M. D., and A. Mcmillan: Studies on the formation of 3-methoxy-4-hydroxy-D-mandelic acid, a urinarv metabolite of norepinephrine and epinephrine. Pharmacol. Rev. 11, 394 (1959).PubMedGoogle Scholar
  48. Arnold, O. H.: Die Bedeutung des α-Methyldopa für die Behandlung der chronischen Hypertonie. Dtsch. med. Wschr. 87, 844 (1962).PubMedGoogle Scholar
  49. Aronson, J. D., S. L. Ehrlich, and W. Flagg: Effects of isonicotinic acid derivatives on tubercle bacilli. Proc. Soc. exp. Biol. (N. Y.) 80, 259 (1952).Google Scholar
  50. Arora, R. B.: Mechanism of action of monoamine oxidase inhibitors in experimental myo-cardial infarction in the pig. Ann. N.Y. Acad. Sci. 107, 1152 (1963).Google Scholar
  51. Arora, R. B., M. Singh, and Y. R. Saxena: A biochemical approach to the mechanism of action of Jatamansone. Life Sci. 1962, 571.Google Scholar
  52. Arrigoni-Martelli, E., E. Genovese e G. F. Goldwurm: Azione della iproniazide sull’ aumento di motilità spontanea da stimolanti centrali. Boll. Soc. ital. Biol. sper. 34, 1576 (1958).PubMedGoogle Scholar
  53. Arrigoni-Martelli, E., u. M. Kramer: Einfluβ von Iproniazid und von Beta-phenylisopropylhydrazin (JB 516) auf die narkotische Wirkung und den Abbau von Hexobarbital und Thiopental. Med. exp. (Basel) 1, 45 (1959).Google Scholar
  54. Arroyo, H., et A. Bernard: A propos de l’action de l’iproniazide sur certaines myocardoses métaboliques. Presse méd. 69, 586 (1961).PubMedGoogle Scholar
  55. Arvy, L.: Contribution à Thistoenzymologie de la glande surrénale chez Bos taurus L. adulte. C.R. Acad. Sci. (Paris) 251, 2782 (1960).Google Scholar
  56. Arvy, L.: Histochimie. — Contribution à l’histoenzymologie de la surrénale des sus scrofa L., (Sui-dae, Gray, 1821), var, domestique. C.R. Acad. Sci. (Paris) 252, 467 (1961).Google Scholar
  57. Asatoor, A. M., A. J. Levi, and M. D. Milne: Tranylcypromine and cheese. Lancet 1963 II, 733.Google Scholar
  58. Ashcroft, G. W., and D. F. Sharman: The effect of reserpine on the concentration of 5-OR indolyl compounds in the caudate nucleus and the cerebrospinal fluid of the dog. J. Physiol. (Lond.) 158, 32P (1961).Google Scholar
  59. Aston, R., and H. Cullumbine: The effects of combinations of ataraxics with hypnotics, LSD and iproniazid in the mouse. Arch. int. Pharmacodyn. 126, 219 (1960).PubMedGoogle Scholar
  60. Ausman, R. K., R. B. Davis, W. R. Meeker, and D. G. Mcquarrie: Effect of amine oxid-ase inhibitors on E. coli endotoxin mortality in mice. Fed. Proc. 19, 279 (1960).Google Scholar
  61. Awapara, J., R. Sandman, and C. Hanly: Activation of DOPA decarboxylase by pyridoxal phosphate. Arch. Biochem. 98, 520 (1962a).PubMedGoogle Scholar
  62. Awapara, J., R. Sandman, and C. Hanly: Purification of DOPA decarboxylase from rat liver. Fed. Proc. 21, 228 (1962b).Google Scholar
  63. Axelrod, J.: Studies on sympathomimetric amines. II. The biotransformation and physiological disposition of D-amphetamin, D-P-hydroxyamphetamin and D-methamphetamin. J. Pharmacol. exp. Ther. 116, 315 (1954).Google Scholar
  64. Axelrod, J.: The enzymatic deamination of amphetamin (Benzedrine). J. biol. Chem. 214, 753 (1955).PubMedGoogle Scholar
  65. Axelrod, J.: O-methylation of epinephrine and other catechols in vitro and in vivo. Science 126, 400 (1957).PubMedGoogle Scholar
  66. Axelrod, J.: Discussion remark to FRIEND et al.: The effect of iproniazid on the inactivation of norepinephrine in the human. J. clin. exp. Psychopath. 19, Suppl. 1, 68 (1958a).Google Scholar
  67. Axelrod, J.: Presence, formation and metabolism of normetanephrine in the brain. Science 127, 754 (1958b).PubMedGoogle Scholar
  68. Axelrod, J.: Discussion remark. Ann. N. Y. Acad. Sci. 80, 624 (1959a).Google Scholar
  69. Axelrod, J.: The metabolism of catecholamines in vivo and in vitro. Pharmacol. Rev. 11, 402 (1959b).PubMedGoogle Scholar
  70. Axelrod, J.: Metabolism of epinephrine and other svmpathomimetic amines. Physiol. Rev. 39, 751 (1959c).PubMedGoogle Scholar
  71. Axelrod, J. G. Hertting, and R. W. Patrick: Inhibition of H3-norepinephrine release by mono-amine oxidase inhibitors. J. Pharmacol. exp. Ther. 134, 325 (1961a).PubMedGoogle Scholar
  72. Axelrod, J., and J. K. Inscoe: The uptake and binding of circulating serotonin and the effect of drugs. J. Pharmacol. exp. Ther. 141, 161 (1963).PubMedGoogle Scholar
  73. Axelrod, J., S. Senoh, and B. Witkop: O-methylation, the principal pathway for the metabolism of epinephrine and norepinephrine in the rat. Biochim. biophys. Acta (Amst.) 27, 210 (1958a).Google Scholar
  74. Axelrod, J., and M.-J. Laroche: Inhibitor of O-methylation of epinephrine and norepinephrine in vitro and in vivo. Science 130, 800 (1959).PubMedGoogle Scholar
  75. Axelrod, J. J. Reichenthal, and B. B. Brodie: Mechanism of the potentiating action of β-diethyl-aminoethyl diphenylpropylacetate. J. Pharmacol. exp. Ther. 112, 49 (1954).PubMedGoogle Scholar
  76. Axelrod, J. S. Senoh, and B. Witkop: O-methylation of catecholamines in vivo. J. biol. Chem. 233, 697 (1958b).PubMedGoogle Scholar
  77. Axelrod, J. L. G. Whitby, and G. Hertting: Effect of psychotropic drugs on the uptake of H1-norepinephrine by tissues. Science 133, 383 (1961b).PubMedGoogle Scholar
  78. Axelrod, J. and I. J. Kopin: Studies on the metabolism of the catecholamines. Circulat. Res. 9, 715 (1961c).PubMedGoogle Scholar
  79. Bächtold, H. P., u. A. Pletscher: Einfluβ von Isonicotinsäurehydraziden auf den Verlauf der Körpertemperatur nach Reserpin, Monoaminen und Chlorpromazin. Experientia (Basel) 13, 163 (1957).Google Scholar
  80. Bächtold, H. P., u. A. Pletscher: Abschwächung der Noradrenalin-Wirkung auf die isolierte Aorta bei Hemmung der Monoaminoxydase. Experientia (Basel) 15, 265 (1959).Google Scholar
  81. Bagdon, R. E.: Unpublished results.Google Scholar
  82. Bagdon, R. E., and M. D. Roe: Unpublished results.Google Scholar
  83. Baker, J., and S. Chaykin: The metabolism of trimethylamine-N-oxide. Fed. Proc. 20, 47 (1960).Google Scholar
  84. Baldridge, E. T., L. V. Miller, J. Haverback, and S. Brunjes: Amine metabolism after an overdose of a monoamine oxidase inhibitor. New Engl. J. Med. 269, 421 (1962).Google Scholar
  85. Balourdas, T. A.: Vascular hypersensitivity and potentiation of catecholamines induced by monoamine oxidase inhibition. Fed. Proc. 23, 231 (1964).Google Scholar
  86. Balzer, H., u. P. Holtz: Beeinflussung der Wirkung biogener Amine durch Hemmung der Aminoxydase. Nauyn-Schmiedebergs Arch. exp. Path. Pharmak. 227, 547 (1956).Google Scholar
  87. Balzer, H., u. P. Holtz, u. D. Palm: Untersuchungen über die biochemischen Grundlagen der konvulsiven Wirkung von Hvdraziden. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 520 (1960).Google Scholar
  88. Balzer, H., u. P. Holtz. u. D. Palm: Reserpin und γ-Aminobuttersäuregehalt des Gehirns. Experientia (Basel) 17, 38 (1961).Google Scholar
  89. Balzer, H., u. P. Holtz, u. D. Palm: Über den Mechanismus der Wirkung des Reserpins auf den Glykogengehalt der Organe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 65 (1962).Google Scholar
  90. Barac, G.: Sur le métabolisme de l’hydroxyphényl-méta-éthanol-amine chez le chien. C.R. Soc. Biol. (Paris) 155, 1598 (1961).Google Scholar
  91. Barbato, L. M., and L. G. Abood: The inhibition of mitochondrial monoamine oxidase (MAO) by phenantroline (PTL) and phenylcyclopropylamine (PCP). Fed. Proc. 20, 237 (1961).Google Scholar
  92. Barbato, L. M., and L. G. Abood: Purification and properties of monoamineoxidase. Biochim. biophys. Acta (Amst.) 67, 531 (1963).Google Scholar
  93. Barbeau, A., et G. Jasmin: Dosage de l’acide 5-hydroxyindolacétique urinaire dans la maladie de PARKINSON. Rev. canad. Biol. 20, 837 (1961).PubMedGoogle Scholar
  94. Barbour, B. H., and M. H. Weil: Treatment of hypertension with alpha methyl dopa. Circulation 24, 880 (1961).Google Scholar
  95. Barger, G., and G. S. Walpole: Isolation of the pressor principles of putrid meat. J. Physiol. (Lond.) 38, 343 (1909).Google Scholar
  96. Barlow, R. B.: Effects on amine oxidase of substances which antagonize 5-hydroxytrypt-amine more than tryptamine on the rat fundus strip. Brit. J. Pharmacol. 16, 153 (1961).PubMedGoogle Scholar
  97. Barlow, R. B. H. Blaschko, J. M. Himms, and U. Trendelenburg: Observations on β-amino-poly-methylene trimethylammonium compounds. Brit. J. Pharmacol. 10, 116 (1955).PubMedGoogle Scholar
  98. Barondes, S. H.: The influence of neuroamines on the oxidation of glucose by the anterior pituitary. I. The role of monoamine oxidase. J. biol. Chem. 237, 204 (1962).PubMedGoogle Scholar
  99. Barondes, S. H. P. Johnson, and J. B. Fields: Stimulation of anterior pituitary glucose oxidation by neurohumeral agents. Clin. Res. Proc. 9, 175 (1961).Google Scholar
  100. Baroni, V., N. Lukinovich e N. DI Marco: Sull’ azione ingrassante dell’ isopropilderivato dell’ isonicotiniledrazide Marsilid “Roche”. Gazz. med. ital. 1957, 371.Google Scholar
  101. Barsky, J.: Reactive site of monoamine oxidase. Ph. D. Diss. (Northwestern University, Chicago, Ill., 1958), Univ. Microfilm Ann Arbor, L. C. No. Mic. 58-5741.Google Scholar
  102. Barsky, J. W. L. Pacha, S. Sarkar, and E. A. Zeller: Amine oxidases. XVII. Mode of action of l-isonicotinyl-2-isopropylhydrazine on monoamine oxidase. J. biol. Chem. 234, 389 (1959).PubMedGoogle Scholar
  103. Bartlet, A. L.: The 5-hydroxytryptamine content of mouse brain and whole mice after treatment with some drugs affecting the central nervous system. Brit. J. Pharmacol. 15, 140 (1960).PubMedGoogle Scholar
  104. Bateman, J.: The role of Marsilid in patients with far advanced cancer. J. clin. exp. Psychopath. 19, Suppl. 1, 123 (1958).PubMedGoogle Scholar
  105. Baudhin, P., H. Beaufay, Y. Rahman-Li, O. Z. Sellinger, R. Wattiaux, P. Jacques, and C. De Duve: Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem. J. 92, 179 (1964).Google Scholar
  106. Baumgartner, H.-R., A. Studer u. K. Reber: Über Methoden zur Erzeugung experimenteller Thrombosen am Kaninchenohr und die Bedeutung von 5-Hydroxytryptamin bei deren Entstehung. Thrombos. Diathes. haemorrh. (Stuttg.) 9, 485 (1963).Google Scholar
  107. Baumgartner, H.-R., A. Studer u. K. Reber: Influence of 5-hydroxytryptamine, 5-hydroxytryptophan, dopamine, noradrenaline and reserpine on the thrombotic deposits in the rabbits. Thrombos. Diathes. haemorrh. (Stuttg.) 12, 169 (1964).Google Scholar
  108. Baxter, C. F., and E. Roberts: The yγaminobutyric acid-α-ketoglutaric acid transaminase of beef brain. J. biol. Chem. 233, 1135 (1958).PubMedGoogle Scholar
  109. Bayliss, R. I. S., and E. A. Harvey-Smith: Methyldopa in the treatment of hypertension. Lancet 1962 I, 763.Google Scholar
  110. Beach, V. L., and B. G. Steinetz: Quantitative measurement of evans blue space in the tissues of the rat: influence of 5-hydroxytryptamine antagonists and phenelzine on experimental inflammation. J. Pharmacol. exp. Ther. 131, 400 (1961).PubMedGoogle Scholar
  111. Beavan, G. H., and J. C. White: Oxidation of phenylhydrazines in the presence of oxyhaemo-globin and the origin of Heinz bodies in erythrocytes. Nature (Lond.) 173, 389 (1954).Google Scholar
  112. Beckenbridge, B. M., and J. H. Norman: Glycogen phosphorylase in brain. J. Neurochem. 9, 383 (1962).Google Scholar
  113. Beer, A. G.: Beiträge zur Pharmakologie des extrapyramidalen Systems. Naunyn-Schmiede-bergs Arch. exp. Path. Pharmak. 193, 393 (1939).Google Scholar
  114. Beiler, J. M., and G. J. Martin: Inhibition of 5-hydroxytryptophan decarboxylase. J. biol, Chem. 211, 39 (1954).Google Scholar
  115. Belford, J., and M. R. Feinlieb: Phosphorylase activity in heart and brain after reserpine, iproniazid and other drugs affecting the central nervous system. Biochem. Pharmacol. 6, 189 (1961).Google Scholar
  116. Belleau, B., and J. Burba: The stereochemistry of the enzymic decarboxylation of amino acids. J. Amer. chem. Soc. 82, 5751 (1960).Google Scholar
  117. Belleau, B. M. Pindell, and R. Reiffenstein: Effect of deuterium substitution of sympathomi-metic amines on adrenergic amines on adrenergic responses. Science 133, 102 (1961).PubMedGoogle Scholar
  118. Belleau, B. M. Pindell, M. Fang, J. Burba, and J. Moran: The absolute optical specificity of monoamine oxidase. J. Amer. Soc. 82, 5752 (1960).Google Scholar
  119. Belleau, B. M. Pindell, and J.Moran: The mechanism of action of the 2-phenylcyclopropylamine type of monoamine oxidase inhibitors. J. med. pharm. Chem. 5, 215 (1962).Google Scholar
  120. Belleau, B. M. Pindell, and J. Moran: Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase. Ann. N.Y. Acad. Sci. 107, 822 (1963).PubMedGoogle Scholar
  121. Ben, M., M. R. Warren, V. P. Drinnon, and C. C. Scott: Cardiovascular activity of β-phenylethylhydrazine (Phenelzine). Pharmacologist 1, 82 (1959).Google Scholar
  122. Ben, M., M. R. Warren, V. P. Drinnon, and C. C. Scott: Cardiovascular activity of β-phenylethylhydrazine (Phenelzine). Angiology 11, 62 (1960).PubMedGoogle Scholar
  123. Benson, W. M., P. L. Stefko, and M. D. Roe: PHARMACOLOGIC and toxicologic observations on hydrazine derivatives of isonicotinic acid (Rimifon, Marsilid). Amer. Rev. Tuberc. 65, 376 (1952).Google Scholar
  124. Bergeret, B., J. Labotjsse et F. Chatagner: Répercussion de la thyroidectomie et d’injections de tyrosine sur l’activité de quelques décarboxylases d’acides aminés chez le rat. Bull. Soc. Chim. biol. (Paris) 40, 1923 (1958).Google Scholar
  125. Bernardi, R., e G. Sideri: Isonicotinil-isopropilidrazide ed emocoagulazione. Gazz. med. ital. 119, 91 (1960).Google Scholar
  126. Bernheim, F.: Note on the action of copper and phenylhydrazine on certain dehydrogenases. J. biol. Chem. 133, 485 (1940).Google Scholar
  127. Bernheim, F. The effect of propamidine on bacterial metabolism. Science 98, 223 (1943).PubMedGoogle Scholar
  128. Bernheim, F., and M. L. C. Bernheim: The oxidation of mescaline and certain other amines. J. biol. Chem. 123, 317 (1938).Google Scholar
  129. Bernheim, F., and M. L. C. Bernheim: The inactivation of tyramine by heart muscle in vitro. J. biol. Chem. 158, 425 (1945).Google Scholar
  130. Bernheim, M. L. C.: Tyramine oxidase. II. The course of the oxidation. J. biol. Chem. 93, 299 (1931).Google Scholar
  131. Bernheimer, H., W. Birkmayer u. O. Hornykiewicz: Verhalten der Monoaminoxydase im Gehirn des Menschen nach Therapie mit Monoaminoxydase-Hemmern. Wien. klin. Wschr. 74, 558 (1962).PubMedGoogle Scholar
  132. Bernheimer, H., W. Birkmayer u. O. Hornykiewicz: Zur Biochemie des Parkinson-Syndroms des Menschen. Einfluβ der Monoamin-oxydase-Hemmer-Therapie auf die Konzentration des Dopamins, Noradrenalins und 5-Hydroxytryptamins im Gehirn. Klin. Wschr. 41, 32 (1963).Google Scholar
  133. Bernheimer, H., W. Birkmayer u. O. Hornykiewicz, u. O. Hornykiewicz: Das Verhalten einiger Enzyme im Gehirn normaler und Parkinsonkranker Menschen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 295 (1962).Google Scholar
  134. Bernsohn, J., and I. Lozaityte: Effect of iproniazid supplemented with various growth-factors on brain serotonin and monoamine oxidase. Fed. Proc. 17, 189 (1958).Google Scholar
  135. Bernsohn, J.; L. Possley, and J. T. Custod: Alternations in brain adenine nucleotides and creatinine phosphate in vivo after the administration of chlorpromazine, JB-516, Dilantin, and Ro 5-0650 (Librium). Pharmacologist 2, 67 (1960).Google Scholar
  136. Bernstein, J., K. A. Losee, C. Smith, and B. Rubin: A novel resolution of l-phenyl-2-propylhydrazin. J. Amer. chem. Soc. 81, 4433 (1959).Google Scholar
  137. Bertaccini, G.: Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastrointestinal tract in the rat. J. Physiol. (Lond.) 153, 239 (1960).Google Scholar
  138. Bertholet, A., et D.-M. Bertrand: Recherches sur la flore intestinale. Isolement d’un microbe capable de produire de la β-imidazoléthylamine aux dépens de l’histidine. C.R. Acad. Sci. (Paris) 154, 1643, 1826 (1912).Google Scholar
  139. Bertler, Å.: Effect of reserpine on the storage of catecholamines in brain and other tissues. Acta physiol. scand. 51, 75 (1961).Google Scholar
  140. Bertler, Å. N.-Å. Hillarp, and E. Rosengren: “Bound” and “free” catecholamines in the brain. Acta physiol. scand. 50, 113 (1960).Google Scholar
  141. Bertler, Å. N.-Å. Hillarp, and E. Rosengren: Effect of reserpine on the storage of new-formed catecholamines in the adrenal medulla. Acta physiol. scand. 52, 44 (1961).Google Scholar
  142. Bertler, Å., and E. Rosengren: Occurrence and distribution of catechol amines in brain. Acta physiol. scand. 47, 350 (1959a).PubMedGoogle Scholar
  143. Bertler, Å., and E. Rosengren: On the distribution in brain of monoamines and of enzymes responsible for their formation. Experentia (Basel) 15, 382 (1959b).Google Scholar
  144. Besendorf, H.: Unpublished results.Google Scholar
  145. Besendorf, H., u. A. Pletscher: Beeinflussung zentraler Wirkungen von Reserpin und 5-Hydroxy-tryptamin durch Isonicotinsäurehydrazide. Helv. physiol. pharmacol. Acta 14, 384 (1956).Google Scholar
  146. Beyer, K. H.: The relation of molecular configuration to the rate of deamination of sym-pathomimetic amines by aminase. J. Pharmacol. exp. Ther. 79, 85 (1943).Google Scholar
  147. Beyer, K. H.: Svmpathomimetic amines: the relation of structure to their action and inactivation. Physiol. Rev. 26, 169 (1946).PubMedGoogle Scholar
  148. Beyer, K. H. H. Blaschko, J. H. Burn, and H. Langemann: Enzymic formation of noradrenaline in mammalian tissue extracts. Nature (Lond.) 165, 926 (1950).Google Scholar
  149. Beyer, K. H. H. Blaschko, J. H. Burn, and H. S. Morrison: Relation of structure to deamination of sympathomimetic amines. Industr. Engin. Chem. 37, 143 (1945).Google Scholar
  150. Beyer, K. H. H. Blaschko, J. H. Burn, and S. H. Shapiro: The excretion of conjugated epinephrine related compounds. Amer. J. Physiol. 144, 321 (1945).Google Scholar
  151. Beyer, K. H., and J. T. Skinner: The detoxication and excretion of beta-phenylisopropyl-amine (Benzedrin). J. Pharmacol. exp. Ther. 68, 419 (1940).Google Scholar
  152. Bhagvat, K., H. Blaschko, and D. Richter: CLXIII. Amine oxidase. Biochem. J. 33, 1338 (1939).PubMedGoogle Scholar
  153. Bianchi, C., and A. David: Analgesic properties of 4-ethoxycarbonyl-l-(2-hydroxy-3-phe-noxypropyl) 4-phenylpiperidine (BDH 200) and some related compounds. J. Pharm. Pharmacol. 12, 449 (1960).PubMedGoogle Scholar
  154. Bickel, M. H., A. Carpi, and D. Bovet: Action of reserpine and monoamine oxidase inhibitors on the urinary excretion of catecholamines in the rat. Helv. physiol. pharmacol. Acta 19, 279 (1961).PubMedGoogle Scholar
  155. Biehl, J. P., and R. W. Vilter: Effect of isoniazid on vitamin B6 metabolism; its possible significance in producing isoniazid neuritis. Proc. Soc. exp. Biol. (N.Y.) 85, 389 (1954).Google Scholar
  156. Biel, J. H., A. C. Conway, F. Di Pero, A. E. Drukker, and P. A. Nuhfer: Synthesis and physiological properties of the D-and L-isomers of α-methylphenethylhydrazine (JB 515) a potent monoamine oxidase (MAO) inhibitor. J. Amer. chem. Soc. 81, 4995 (1959a).Google Scholar
  157. Biel, J. H., A. E. Drukker, T. F. Mitchell, E. P. Sprengeler, P. A. Nuhfer, A. C. Conway, and A. Horita: Central stimulants. Chemistry and structure — activity relationships of aralkyl hydrazines. J. Amer. chem. Soc. 81, 2805 (1959b).Google Scholar
  158. Biel, J. H., A. E. Drukker, P. A. Shore, S. Spector, and B. B. Brodie: Effect of l-phenyl-2-hydrazinopropane, a potent monoamine oxidase (MAO) inhibitor, on brain levels of norepinephrine and serotonin. J. Amer. chem. Soc. 80, 1519 (1958).Google Scholar
  159. Biel, J. H. A. Horita, and A. E. Drukker: Monoamine oxidase inhibitors (hydrazines). In: Psycho-pharmacological Agents, vol. 1, edit. M. Gordon, New York: Academic Press Inc. 1964.Google Scholar
  160. Biel, J. H., P. A. Nuhfer, and A. C. Conway: Structure and activity relationships of monoamine oxidase inhibitors. Ann. N.Y. Acad. Sci. 80, 568 (1959c).PubMedGoogle Scholar
  161. Biel, J. H., P. A. Nuhfer, A. E. Drukker, T.E. Mitchell, A. C. Conway, and A. Horita: A new class of potent MAO inhibitors. Chemistry and structure-activity relationships of aminoalkyl-hydrazines. J. org. Chem. 26, 3338 (1961).Google Scholar
  162. Bignami, G.: Action de quelques dérivés inhibiteurs des monoaminooxydases sur le cycle oestral de la ratte normale et traitée par la réserpine. R.C. Acad. Sci. (Paris) 250, 3731 (1960).Google Scholar
  163. Bignami, G., F. Bovet-Nitti, and A. P. Corrado: Central action of two new monoamine oxidase inhibitors: N-(1,4-benzodioxan-2-yl)-methylhydrazine (2520 I.S.) and N-(1,4-benzo-dioxan-2-yl)-methyl-N-benzyl-hydrazine (2596 I.S.). Sci. Rep. Ist. Super. Sanità 2, 170 (1962).Google Scholar
  164. Billervicz-Stankiewicz, J., Z. Szczekala u. W. Tyburczyk: Beeinflussung der „Adrena-lin-Oxydasen“ des Blutplasma in vivo durch biogene Monoamine und Neuropharmaca. Experientia (Basel) 20, 85 (1964).Google Scholar
  165. Bing, R. J.: Amine oxidase inhibitors: discussion remarks. Ann. N.Y. Acad. Sci. 80, 1030 (1959).Google Scholar
  166. Birkhäuser, H.: Fermente im Gehirn geistig normaler Menschen. (Cholin-esterase, Mono-und Diamin-oxydase, Cholin-oxydase). Helv. chim. Acta 23, 1071 (1940).Google Scholar
  167. Birkhäuser, H.: Cholinesterase und Mono-Aminoxydase im zentralen Nervensystem. Schweiz. med. Wschr. 71, 750 (1941).Google Scholar
  168. Birt, A. R., P. Hagen, and E. Zebrowski: Amino acid decarboxylase of urticaria pigmen-tose mast cells. J. invest. Derm. 37, 273 (1961).PubMedGoogle Scholar
  169. Black, J. W., E. W. Fischer, and A. N. Smith: The effect of 5-hydroxytryptamin on gastric secretion in anaesthetized dogs. J. Physiol. (Lond.) 141, 27 (1958).Google Scholar
  170. Blackman, J. G., D. S. Campion, and E. N. Fastier: Mechanism of action of reserpine in producing gastric haemorrhage and erosion in the mouse. Brit. J. Pharmacol. 14, 112 (1959).PubMedGoogle Scholar
  171. Blackwell, B.: Hypertensive crisis due to monoamine-oxidase inhibitors. Lancet 1963 II, 849.Google Scholar
  172. Blackwell, B., and E. Marley: Interaction between cheese and monoamine-oxidase inhibitors in rats and cats. Lancet 1964 I, 530.Google Scholar
  173. Blanksma, L. A.: Substrate and inhibitor patterns of monoamine oxidase. Diss. Northwestern Univ. Chicago 1962 [Diss. Abstr. 23, 3103 (1963)].Google Scholar
  174. Blaschko, H.: CCLXXIII. The mechanism of catalase inhibitions. Biochem. J. 29, 2302 (1935).Google Scholar
  175. Blaschko, H.: Amine oxidase and ephedrine. J. Physiol. (Lond.) 93, 7P (1938).Google Scholar
  176. Blaschko, H.: The specific action of 1-dopa decarboxylase. J. Physiol. (Lond.) 96, 50P (1939).Google Scholar
  177. Blaschko, H.: Amine oxidase and benzedrine. Nature (Lond.) 145, 26 (1940).Google Scholar
  178. Blaschko, H.: The activity of 1(−)-DOPA decarboxylase. J. Physiol. (Lond.) 101, 337 (1942).Google Scholar
  179. Blaschko, H.: The amino acid decarboxylase of mammalian tissue. Advanc. Enzymol. 5, 72 (1945).Google Scholar
  180. Blaschko, H.: Substrate specificity of amino-acid decarboxylases. Biochim. biophys. Acta (Amst.) 4, 130 (1950).Google Scholar
  181. Blaschko, H.: Amine oxidase and amine metabolism. Pharmacol. Rev. 4, 415 (1952).PubMedGoogle Scholar
  182. Blaschko, H.: Remarks on the location of histamine in mammalian tissues. CIBA Foundation, Symposium on Histamine, p. 375. London: J. & A. Churchill Ltd.Google Scholar
  183. Blaschko, H.: Biological inactivation of 5-hydroxytryptamine. In: 5-Hydroxytryptamine, p. 50, edit. G. P. Lewis. London: Pergamon Press Ltd. 1958.Google Scholar
  184. Blaschko, H.: The role of dopa-decarboxylase in the formation of catecholamines. The Second Hahne-mann Symposium on Hypertensive Disease, p. 330. Philadelphia: Lea & Febiger 1961.Google Scholar
  185. Blaschko, H.: The amine oxidases of mammalian blood plasma. Advanc. comp. Physiol. Biochem. 1, 67 (1962).Google Scholar
  186. Blaschko, H.: Amine oxidase. In: The Enzymes, vol. 8, p. 337, edit. P. D. Boyer, H. Lardy and K. Myebäck. New York and London: Academic Press Inc. 1963.Google Scholar
  187. Blaschko, H. J. H. Burn, and C. W. Carter: L-dopa decarboxylase and pressor amine formation in the adrenal medulla. J. Physiol. (Lond.) 115, 37P (1951).Google Scholar
  188. Blaschko, H. C. W. Carter, J. R. P. O’brien, and G. H. Sloane Stanley: Pyridoxin in relation to amine formation in the mammalian liver. J. Physiol. (Lond.) 107, 18P (1948).Google Scholar
  189. Blaschko, H., and T. L. Chruściel: Observations on the substrate specificity of amine oxidases. Brit. J. Pharmacol. 14, 364 (1959).PubMedGoogle Scholar
  190. Blaschko, H., and T. L. Chruściel: The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine-treated mice. J. Physiol. (Lond.) 151, 272 (1960).Google Scholar
  191. Blaschko, H., and R. Duthie: The inhibition of amine oxidase by amidines. Biochem. J. 39, 347 (1945a).Google Scholar
  192. Blaschko, H., and R. Duthie: Substrate specificity of amine oxidases. Biochem. J. 39, 478 (1945b).Google Scholar
  193. Blaschko, H. P. J. Friedman, R. Hawes, and K. Nilsson: The amine oxidase of mammalian plasma. J. Physiol. (Lond.) 145, 384 (1959).Google Scholar
  194. Blaschko, H. P. Hagen, and A. D. Welch: Observations on the intracellular granules of the adrenal medulla. J. Physiol. (Lond.) 129, 27 (1955).Google Scholar
  195. Blaschko, H., and J. Hawkins: Enzymic oxidation of aliphatic diamines. Brit. J. Pharmacol. 5, 625 (1950).PubMedGoogle Scholar
  196. Blaschko, H., and K. Hellmann: Pigment formation from tryptamin and 4-hydroxytryptamin in tissues: a contribution to the histochemistry of amine oxidase. J. Physiol. (Lond.) 122, 419 (1953).Google Scholar
  197. Blaschko, H., and J. M. Himms: The inhibition of amine oxidase and spermin oxidase by amidines. Brit. J. Pharmacol. 10, 451 (1955).PubMedGoogle Scholar
  198. Blaschko, H., and P. Holton: Enzymic formation of other tyramine (O-hydroxyethylamine). J. Physiol. (Lond.) 110, 482 (1950).Google Scholar
  199. Blaschko, H.: and G. H. Sloane-Stanley: Enzymic formation of pressor amines. J. Physiol. (Lond.) 108, 427 (1949).Google Scholar
  200. Blaschko, H., and F. J. Philpot: Enzymic oxidation of tryptamin derivatives. J. Physiol. (Lond.) 122, 403 (1953).Google Scholar
  201. Blaschko, H., and P. Pratesi: Specificity of amine oxidase for optically active substrates and inhibitors. Brit. J. Pharmacol. 14, 256 (1959).PubMedGoogle Scholar
  202. Blaschko, H. D. Richter, and H. Schlossmann: CCLXVIII. The oxidation of adrenaline and other amines. Biochem. J. 31, 2187 (1937a).PubMedGoogle Scholar
  203. Blaschko, H. D. Richter, and H. Schlossmann: The inactivation of adrenaline. J. Physiol. (Lond.) 90, 1 (1937b).Google Scholar
  204. Blaschko, H. D. Richter, and H. Schlossmann: Enzymic oxidation of amines. J. Physiol. (Lond.) 91, 13P (1937c).Google Scholar
  205. Blaschko, H. D. Richter, and B. C. R. Strömblad: The inhibition of human amine oxidase by the two isomers of amphetamine. Arzneimittel-Forsch. 10, 327 (1960).Google Scholar
  206. Bloch, W., u. H. Pinösch: Die Umwandlung von Histidin in Histamin im tierischen Organismus. Hoppe-Seylers Z. physiol. Chem. 239, 236 (1936).Google Scholar
  207. Block, W.: Der Einbau von Barbituraten und Thiobarbituraten in Proteine. Arzneimittel-Forsch. 11, 122 (1961).Google Scholar
  208. Bloom, B. M.: Some structural considerations regarding compounds that influence mono-amine oxidase. Ann. N.Y. Acad. Sci. 107, 878 (1963).PubMedGoogle Scholar
  209. Blum, S. W., B. Dubnick, and J. M. Apgar: Distribution and metabolism of modaline (2-methyl-3-piperidino-pyrazine, W 3207). Fed. Proc. 23, 490 (1964).Google Scholar
  210. Blumberg, A., u. C. Dubach, W. Kreis u. H.R. Müller: Klinische und biochemische Untersuchungen beim Carcinoidsyndrom. Dtsch. med. Wschr. 87, 921 (1962).PubMedGoogle Scholar
  211. Boer, B. De, O. Engelstadt, and D. Gray: Inhibition of morphine hyperglycemia. Fed. Proc. 18, 382 (1959).Google Scholar
  212. Bogdanski, D. F., A. Pletscher, B. B. Brodie, and S. Udenfriend: Identification and assay of serotonin in brain. J. Pharmacol. exp. Ther. 117, 82 (1956).PubMedGoogle Scholar
  213. Bogdanski, D. F., H. Weissbach, and S. Udenfriend: The distribution of serotonin, 5-hydroxytrypto-phan decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272 (1957).PubMedGoogle Scholar
  214. Bonati, F.: Confronto degli stereoisomeri della cicloserina quali detossicanti della isonia-zide. Boll. Soc. ital. Biol. sper. 34, 956 (1958).PubMedGoogle Scholar
  215. Bonavita, U.: Purification and properties of glutamic-oxaloeacetic tiansaminase from human brain. J. Neurochem. 4, 275 (1959).PubMedGoogle Scholar
  216. Bonfils, S., M. Dubrasquet et A. Lambling: Les utilisations de la technique de l’ulcère de contrainte du rat blanc comme test pharmacodynamique. Thérapie 15, 1096 (1960).Google Scholar
  217. Bonnycastle, D.D., N. J. Giarman, and M. K. Paasonen: Anticonvulsant compounds and 5-hydroxytryptamine in rat brain. Brit. J. Pharmacol. 12, 228 (1957).PubMedGoogle Scholar
  218. Born, G. V. R., G. I. C. Ingram, and R. S. Stacey: The relationship between 5-hydroxytryptamine and adenosine triphosphate in blood platelets. Brit. J. Pharmacol. 13, 62 (1958).PubMedGoogle Scholar
  219. Borowitz, J. L., and W. C. North: Iproniazid on the toxicity of epinephrine, norepine-phrine and serotonin. Fed. Proc. 18, 370 (1959a).Google Scholar
  220. Borowitz, J. L., and W. C. North: Potentiation of epinephrine and norepinephrine by iproniazid. Science 130, 710 (1959b).PubMedGoogle Scholar
  221. Bose, B. C., and R. Vijayvargya: Observations on the mechanism of action of tranqui-lisers — a study of their effect on monoamine oxidase, D-and L-amino acid oxidase and catalase. J. Pharm. Pharmacol. 12, 99 (1960).PubMedGoogle Scholar
  222. Botros, M., D. Lindsay, E. Poulson, and J. M. Robson: Mode of action of 5-HT and iproniazid on pregnancy. Biochem. Pharmacol. 8, 102 (1961).Google Scholar
  223. Botros, M., D. Lindsay, E. Poulson, and J. M. Robson: The effects of 5-hydroxytryptamine and iproniazid on sexual development. J. Endocr. 20, X (1960).Google Scholar
  224. Boullin, D. J.: Behaviour of rats depleted of 5-hydroxytryptamine by feeding a diet free of tryptophan. Psychopharmacologia (Berl.) 5, 28 (1963).Google Scholar
  225. Bovet-Nitti, F., et G. Bignami: Action de quelques dérivés du 2-amino-méthyl-benzo-dioxan sur l’équilibre hormonal du cycle, de la pseudo grossesse et de la grossesse chez la ratte. Biochem. Pharmacol. 8, 3 (1961).Google Scholar
  226. Bovet-Nitti, F. O. Orsinger, R. Landi-Vittory et D. Bovet: Pharmacologie. Un nouvel inhibiteur des monoamino oxydases: le N’-(l,4-benzodioxan-2-méthyl)-N’-benzyl-hydrazine (2596 IS). C.R. Acad. Sci. (Paris) 252, 614 (1961).Google Scholar
  227. Boylen, J. B., and J. H. Quastel: Effects of L-phenylalanine and sodium phenylpyruvate on the formation of adrenaline from L-tyrosine in adrenal medulla in vitro. Biochem. J. 80, 644 (1961).PubMedGoogle Scholar
  228. Brenk, H. A. S., VAN DEN, and K. Elliott: Radioprotective action of 5-hydroxytryptamine. Nature (Lond.) 182, 1506 (1958).Google Scholar
  229. Brest, A. N., G. Onesti, and J. H. Moyer: Alpha-methyl dopa in the treatment of hypertension. Circulation 24, 892 (1961).Google Scholar
  230. Brimblecombe, R. W., and A.L. Green: Effect of monoamine oxidase inhibitors on the behaviour of rats in Hall’s Open Field. Nature (Lond.) 194, 983 (1962).Google Scholar
  231. Brodie, B. B., and M. A. Beaven: Neurochemical transducer systems. Med. exp. 8, 320 (1963).PubMedGoogle Scholar
  232. Brodie, B. B., and E. Costa: Role of norepinephrine in autonomic ganglia in regulation of blood pressure. The Second Hahnemann Symposium on Hypertensive Disease, p. 354. Philadelphia: Lea & Febiger 1961.Google Scholar
  233. Brodie, B. B., G. L. Gessa, and E. Costa: Association between reserpine syndrome and blockade of brain serotonin storage processes. Life Sci. 1962a, 551.Google Scholar
  234. Brodie, B. B., J. R. Gilette, and B. N. Ladu: Enzymatic metabolism of drugs and other foreign compounds. Ann. Rev. Biochem. 27, 427 (1958a).PubMedGoogle Scholar
  235. Brodie, B. B., R. Kuntzman, C. W. Hirsch, and E. Costa: Effects of decarboxylase inhibition on the biosynthesis of brain monoamines. Life Sci. 1962b, 81.Google Scholar
  236. Brodie, B. B., A. Pletscher. and P. A. Shore: Possible role of serotonin in brain function and in reserpine action. J. Pharmacol. exp. Ther. 116, 9 (1956).Google Scholar
  237. Brodie, B. B., A. Pletscher., and P. A. Shore: A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann. N.Y. Acad. Sci. 66, 631 (1957).PubMedGoogle Scholar
  238. Brodie, B. B., S. Spector, R. Kuntzman, and P. A. Shore: Rapid biosynthesis of brain serotonin before and after reserpine administration. Naturwissenschaften 45, 243 (1958b).Google Scholar
  239. Brodie, B. B., S. Spector, R. Kuntzman, and P. A. Shore: Interaction of monoamine oxidase inhibitors with physiological and biochemical mechanism in brain. Ann. N.Y. Acad. Sci. 80, 609 (1959a).PubMedGoogle Scholar
  240. Brodie, B. B., S. Spector, R. Kuntzman, and P. A. Shore: Interaction of drugs with norepinephrine in the brain. Pharmacol. Rev. 11, 548 (1959b).PubMedGoogle Scholar
  241. Brodie, B. B., E. G. Tomich, R. Kuntzman, and P. A. Shore: On the mechanism of action of reserpine: effect of reserpine on capacity of tissues to bind serotonin. J. Pharmacol. exp. Ther. 119, 461 (1957).PubMedGoogle Scholar
  242. Brody, M., and F. Goetz: Studies on the gastrointestinal effects of Marsilid. J. clin. exp. Psychopath. 19, Suppl. 1, 146 (1958).PubMedGoogle Scholar
  243. Brown, B. B.: DNS drug actions and interaction in mice. Arch. int. Pharmacodyn. 128, 391 (1960).Google Scholar
  244. Brown, B. G., and P. Hey: Substituted choline arvl ethers as inhibitors of amine oxidase. J. Physiol. (Lond.) 118, 15P (1952).Google Scholar
  245. Brown, B. G., and P. Hey: Choline phenyl ethers as inhibitors of amine oxidase. Brit. J. Pharmacol. 11, 58 (1956).PubMedGoogle Scholar
  246. Brown, L.: Esperimenti sulla trasmissione adrenergica. Boll. Soc. ital. Biol. sper. 34, 1979 (1958).Google Scholar
  247. Brubacher, G. B., and O. Wiss: Unpublished results.Google Scholar
  248. Brune, G. G., and H. E. Hlmwich: Biphasic action of reserpine and isocarboxazid on behavior and serotonin metabolism. Science 133, 190 (1961).PubMedGoogle Scholar
  249. Brusova, L. V., V. Z. Gorkin, D. K. Zhelyazkov, N. A. Kitrosskii, G. A. Leont’eva, and I. S. Severina: New spectrometric method for the estimation of monoamine oxidase activity in rat liver homogenates. Vop. med. Khim. 10, 83 (1963) [Chem. Abstr. 60, 13509f. (1964)].Google Scholar
  250. Buchel, L., et J. Lévy: Contribution à l’étude des effets sur le système nerveux central de rhydrazino-2-phényl-3-propane (PIH) comparés à ceux de la l-isonicotinyl-2-isopropyl-hvdrazine (iproniazide). I. Influence sur le sommeil expérimental. Anesth. et Anals. 17, 289 (1960a).Google Scholar
  251. Buchel, L., et J. Lévy: Contribution à l’étude des effets sur le système nerveux cential des inhibiteurs de la monoaminoxydase, hydrazino-2-phényl-3-propane (PIH), isopropyl-hydrazide de l’acide isonicotinique (iproniazide). II. Influence sur la potentialisation du sommeil expérimental par la réserpine. Anesth. et Analg. 17, 313 (1960b).Google Scholar
  252. Buchel, L., et J. Lévy: Contribution à l’étude des effets sur le système nerveux central de l’hydrazino-2-phényl-3-propane (PIH), comparés à ceux de la l-isonicotinyl-2-isopropylhydrazide (iproniazide). III. Action anticonvulsivante. Anesth. et Analg. 17, 329 1960c).Google Scholar
  253. Buchel, L., et et N. Mathieu: Contribution à l’étude des effets sur le système nerveux de l’hydra-zino-2-phényl-3-propane (PIH) comparés à ceux de la l-isonicotinyl-2-isopropylhydra-zide (iproniazide). IV. Influence sur l’analgésie provoquée par la 1-méthadone. Anesth. et Analg. 17, 339 (1960a).Google Scholar
  254. Buchel, L., et O. Tanguy: Influence de la sérotonine et du d,l 5-hydroxy-tryptophane sur le sommeil expérimental en présence ou non d’iproniazide. Agressologie 1, 389 (1960b).Google Scholar
  255. Buchel, L., et J. Sturtz-Moury: Prolongation et renforcement de la narcose sous l’influence d’esters-amines et de leurs iodométhylates dérivés de l’acide l-bicyclohexjd-l-carboxylique. Anesth. et Analg. 14, 921 (1957).Google Scholar
  256. Buckley, J. P., A. R. Furgiuele, and W. J. Kinnard: The pharmacology of β-phenyl-isopropylhydrazine. Fed. Proc. 19, 278 (1960).Google Scholar
  257. Buffoni, F., and H. Blaschko: Benzylamine oxidase and histaminase: studies of a crystalline preparation of the amine oxidase of pig plasma. Biochem. J. 89, 111 (1963).Google Scholar
  258. Bülbring, E., F. J. Philpot, and F. Basanquet: Amine oxidase, pressor amines and cholinesterase in brain tumours. Lancet 1953 I, 865.Google Scholar
  259. Buhs, R. P., J. L. Beck, O. C. Speth, J. L. Smith, N. R. Trenner, P. J. Cannon, and J. H. Laragh: The metabolism of methyldopa in hypertensive human subjects. J. Pharmacol. exp. Ther. 143, 205 (1964).PubMedGoogle Scholar
  260. Burford, H., J. Leick, and E. J. Walaszek: Modification of the effects of biogenic amines on the heart by iproniazid. Arch. int. Pharmacodyn. 128, 39 (1960).PubMedGoogle Scholar
  261. Burford, H., J. Leick., and E. J. Walaszek: Modification of the pressor effects of tyramine and tryptamine by iproniazid and reserpine. Fed. Proc. 19, 124 (1960).Google Scholar
  262. Burger, A., C. S. Davis, H. Green, D. H. Tedeschi, and C. L. Zirkle: l-Methyl-2-phenyl-cyclopropylamine. J. med. pharm. Chem. 4, 571 (1961).PubMedGoogle Scholar
  263. Burger, M., u. H. Langemann: Bestimmungen von Adrenalin und Noradrenalin sowie von Decarboxylase-und Aminoxydase-Aktivitäten in Zellfraktionen von Phäochromocyto-men. Klin. Wschr. 34, 941 (1956).PubMedGoogle Scholar
  264. Burkard, W. P.: Unpublished results.Google Scholar
  265. Burkard, W. P., K. F. Gey, and A. Pletscher: Inhibition of diamine oxidase in vivo by hydrazine derivatives. Biochem. Pharmacol. 3, 249 (1960).PubMedGoogle Scholar
  266. Burkard, W. P., K. F. Gey, and A. Pletscher: Differentiation of monoamine oxidase and diamine oxidase. Biochem. Pharmacol. 11, 177 (1962a).PubMedGoogle Scholar
  267. Burkard, W. P., K. F. Gey, and A. Pletscher: A new inhibitor of decarboxvlase of aromatic amino acids. Experientia (Basel) 18, 411 (1962b).Google Scholar
  268. Burkard, W. P., K. F. Gey, and A. Pletscher: Diamine oxidase in the brain of vertebrates. J. Neurochem. 10, 183 (1963).PubMedGoogle Scholar
  269. Burkard, W. P., K. F. Gey, and A. Pletscher: Inhibition of the hydroxylation of tryptophan and phenylalanine by α-methyl-dopa and similar compounds. Life Sci. 3, 27 (1964a).PubMedGoogle Scholar
  270. Burkard, W. P., K. F. Gey, and A. Pletscher: Hemmung der Tryptophan-Hydroxvlase durch α-Methvl-dopa. Helv. physiol. pharmacol. Acta 22, C 7 (1964b).Google Scholar
  271. Burkard, W. P., K. F. Gey, and A. Pletscher: Inhibition of decarboxylase of aromatic amino acids by 2,3,4-trihydroxybenzyl-hydrazine and its seryl derivative. Arch. Biochem. 107, 187 (1964c).PubMedGoogle Scholar
  272. Burkard, W. P., R. Pavlin, A. Pletscher and K. F. Gey: Effect of psychotropic drugs on decarboxylase of aromatic amino acids in rat brain. Int. J. Neuropharmacol. 1, 233 (1962c).Google Scholar
  273. Burkhalter, A.: Histamine formation by fetal rat liver. Fed. Proc. 20, 257 (1961).Google Scholar
  274. Burkhalter, A.: The formation of histamine by fetal rat liver. Biochem. Pharmacol. 11, 315 (1962).PubMedGoogle Scholar
  275. Burkhalter, A., V. H. Cohn, and P. A. Shore: Studies on histamine in mammalian organs. Fed. Proc. 18, 373 (1959).Google Scholar
  276. Burn, J. H., F. J. Philpot, and U. Trendelenburg: Effect of denervation on enzymes in iris and blood vessels. Brit. J. Pharmacol. 9, 423 (1954).PubMedGoogle Scholar
  277. Burn, J. H., F. J. Philpot, and M. J. Rand: Noradrenaline in artery walls and its dispersal by reserpine. Brit. med. J. 1958a I, 903.Google Scholar
  278. Burn, J. H., F. J. Philpot, and M. J. Rand: The action of sympathomimetic amines in animals treated with reserpine. J. Physiol. (Lond.) 144, 314 (1958b).Google Scholar
  279. Burn, J. H., F. J. Philpot, and J. Robinson: Effect of denervation on amine oxidase in structures innervated by the sympathetic. Brit. J. Pharmacol. 7, 304 (1952).PubMedGoogle Scholar
  280. Burton, R. M.: In: E. Robert et al.: Inhibition of the nervous system and GABA, p. 253. New York: Pergamon Press 1960.Google Scholar
  281. Buxton, J., and H. M. Sinclair: Pyridoxal phosphate as a coenzyme of 5-hydroxytryto-phan decarboxylase. Biochem. J. 62, 27P (1956).Google Scholar
  282. Buzard, J. A., and P. D. Nytch: Some characteristics of rat kidney 5-hydroxytryptophan decarboxylase. J. biol. Chem. 227, 265 (1957).Google Scholar
  283. Buzard, J. A., and P. D. Nytch: The effect of norepinephrine on the 5-hydroxytryptophan decarboxylase activity of rat kidney. J. biol. Chem. 234, 884 (1959).PubMedGoogle Scholar
  284. Bygdeman, M., and L. Stjärne: Effects of 1,4-dihydrazinophthalazine on organ content and adrenal medullary secretion of catechol amines. Nature (Lond.) 184, 1646 (1959).Google Scholar
  285. Cahn, J.: L’action du Marsilid et du Marplan sur le métabolisme cérébrale. In: Neuropsycho-pharmacology, vol. 2, p. 450, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961.Google Scholar
  286. Cahn, J., et M. Hérold: Effets cardio-vasculaires comparés des inhibiteurs de la mono-amine-oxydase: Effets pharmacologiques — Action sur la dynamique et le métabolisme cardiaque. Agressologie 1, 579 (1960a).PubMedGoogle Scholar
  287. Cahn, J., et M. Hérold: Recherches préliminaires sur les effets pharmacologiques et biochimiques des inhibiteurs de la monoamine-oxydase sur le coeur. Cardiologia (Basel) 37, Suppl. 2, 52 (1960b)Google Scholar
  288. Cahn, J., et M. Hérold: Etude pharmacologique du Ro 1-9569 (Tétrabenazine). Psychiat. et Neurol. (Basel) 140, 210 (1960c).Google Scholar
  289. Cahn, J., et M. Hérold: Effets cardio-vasculaires comparés des inhibiteurs de la mono-amine-oxydase. Effets pharmacologiques. Action sur la dynamique et le métabolisme cardiaque. Chemotherapie 4, 262 (1962).Google Scholar
  290. Cahn, J., et M. Hérold, J. Alano, N. Barre, P. Espagnol, E. Gauthier, C. Helbecque, O. Kabacoff, G. Mathias et O. Mathias: Un nouvel inhibiteur de la MAO: l’isopropyl-hydrazide de l’acide 4-hydroxybutyrique (PC 614). Agressologie 2, 687 (1961a).PubMedGoogle Scholar
  291. Cahn, J., G. Mathias et O. Mathias, N. Barre, O. Kabacoff, and I. Bamberger: Mode of action of inhibitors of mono-amine oxidase on the cardio-vascular system. Relationship to chemical structure. Biochem. Pharmacol. 8, 134 (1961b).Google Scholar
  292. Cahn, J., G. Mathias C. Helbecque, T. Lasjaumias et A.-M. Juillard: Effets comparés de différents inhibiteurs de la L-dopa décarboxylase chez le rat et la souris. C. R. Soc. Biol. (Paris) 156, 1094 (1962a).Google Scholar
  293. Cahn, J., G. Mathias et O. Mathias: Effets de différents inhibiteurs de la L-dopa décarboxylase sur le système cardiovasculaire chez le lapin. C. R. Soc. Biol. (Paris) 156, 1090 (1962b).Google Scholar
  294. Camanni, F., O. Losana, G. M. Molinatti et M. Olivetti: Effet de la réserpine sur le contenu en catécholamines de la médullaire surrénale du rat, après administration d’iproniazide ou dénervation de la glande. Arch. int. Pharmacodyn. 123, 430 (1960).PubMedGoogle Scholar
  295. Canal, N., and S. Garattini: Isonicotinylhydrazide, hepatic respiratory quotient and inhibition of some enzymatic systems with pyridoxal coenzyme. Arzneimittel-Forsch. 7, 158 (1957).Google Scholar
  296. Canal, N., e A. Maffei-Faccioli: Variazioni della triptofanoperossidasi-ossidase (TPO) epatica indotta da alcuni farmaci. Distribuzione della triptofano-perossidasi-ossidase (TPO) in alcune specie animali. Boll. Soc. ital. Biol. sper. 35, 302 (1959a).PubMedGoogle Scholar
  297. Canal, N., e A. Maffei-Faccioli: Reversal of the reserpine-induced depletion of brain serotonin by a monoamine oxidase inhibitor. J. Neurochem. 5, 99 (1959b).PubMedGoogle Scholar
  298. Canal, N., e A. Maffei-Faccioli: The in vitro and in vivo inhibitory action of isonicotinic acid hydrazide on 5-hydroxytryptophan decarboxylase. Rev. esp. Fisiol. 16, Suppl. 2, 234 (1960). [Chem. Abstr. 55, 4755 (1961)].Google Scholar
  299. Canal, N., e B. Manzini: SU alcune nuove sostanze bloccanti le monoamino-ossidasi. Boll. Soc. ital. Biol. sper. 34, 1525 (1958).PubMedGoogle Scholar
  300. Canal, N., e T. Scamazzo: Sulla varietà di effetti biochimici e farmacologici osservabili in seguito ad inibizione della monoaminossidasi (MO). Boll. Soc. ital. Biol. sper. 35, 436 (1959).PubMedGoogle Scholar
  301. Canal, N., G. Giuliani, A. Maffei-Faccioli, and T. Scamazzo: On the mechanism of the adrenal cortex stimulation by reserpine. Biochem. Pharmacol. 8, 130 (1961).Google Scholar
  302. Cannon, P. J., R. T. Whitlock, R. C. Morris, M. Angers, and J. H. Laragh: Effect of alpha-methyl dopa in severe and malignant hypertension. J. Amer. med. Ass. 179, 673 (1962).Google Scholar
  303. Carbon, J. A., W. P. Burkard u. E. A. Zeller: Über die Wirkungen von symmetrischen 1,2-Dialkyl-hydrazinen auf Cargonylverbindungen und Amin-oxydasen. Helv. chim. Acta 41, 1883 (1958).Google Scholar
  304. Cardot, J.: Décarboxylation in vitro du 5-hydroxytryptophane par le tissue nerveux du Mollusque Gastéropode Helix pomatia. C. R. Acad. Sci. (Paris) 256, 1036 (1963).Google Scholar
  305. Carissimi, M.: SU alcuni nuovi derivati dell’iproniazide. Farmaco, Ed. sci. 13, 817 (1958).Google Scholar
  306. Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490 (1959).PubMedGoogle Scholar
  307. Carlsson, A.: Discussion remark. In: Adrenergic Mechanisms, p. 558, edit. J. R. Vane, G. E. W. Wolstenholme and M. O’connor. London: J. & A. Churchill Ltd. 1960.Google Scholar
  308. Carlsson, A.: Brain monoamines and psychotropic drugs. In: Neuropsychopharmacology, vol. 2, p.417, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961.Google Scholar
  309. Carlsson, A.: Functional significance of drug-induced changes in brain monoamine levels. In: Progress in Brain Research, vol. 8, p. 9, edit. H. E. Himwich and W. A. Himwich. Amsterdam: Elsevier Publishing Co. 1964.Google Scholar
  310. Carlsson, A., H. Corrodi u. B. Waldeck: α-Substituierte Dopacetamide als Hemmer der Catechol-O-methyl-transferase und der enzymatischen Hydroxylierung aromatischer Aminosäuren. In den Catecholamin-Metabolismus eingreifende Substanzen. Helv. chim. Acta 46, 2271 (1963).Google Scholar
  311. Carlsson, A., and N.-Å. Hillarp: Formation of phenolic acids in brain after administration of 3,4-dihydroxyphenylalanine. Acta physiol. scand. 55, 95 (1962).PubMedGoogle Scholar
  312. Carlsson, A., and M. Lindqvist: In vivo décarboxylation of α-methyldopa and α-methylmetatyrosine. Acta physiol. scand. 54, 87 (1962).PubMedGoogle Scholar
  313. Carlsson, A., and T. Magnusson: 3,4-Dihydxoxyphenylalanine and 5-hydroxytryptophan as reser-pine antagonists. Nature (Lond.) 180, 1200 (1957a).Google Scholar
  314. Carlsson, A., and T. Magnusson: The effect of monoamine oxidase inhibitors on the metabolism of the brain catecholamines. Simpcsio internacional sobre Nialamida, Lisboa. J. Soc. Ciénc. méd. Lisboa 123, Suppl., 96 (1959a).Google Scholar
  315. Carlsson, A., and B. Waldeck: On the presence of 3-hydroxytyramine in brain. Science 127, 471 (1958).PubMedGoogle Scholar
  316. Carlsson, A. E., B. Rasmussen, and P. Kristjansen: The urinary excretion of adrenaline and noradre-naline by depressive patients during iproniazid treatment. J. Neurochem. 4, 321 (1959b).PubMedGoogle Scholar
  317. Carlsson, A. E., Rosengren, Å. Bertler, and J. Nilsson: Effect of reserpine on the metabolism of catecholamines. In: Psychotropic Drugs, p. 363. Amsterdam: Elsevier Publ. Co. (1957b).Google Scholar
  318. Carlsson, A. E. Rosengren, Å. Bertler, and B. Waldeck: On the role of the liver catechol-O-methyl transferase in the metabolism of circulating catecholamines. Acta pharmacol. (Kbh.) 20, 47 (1963).Google Scholar
  319. Carrier, R. N., and P. V. Buday: The influence of thyroid feeding on the pharmacologic actions of some monoamine oxidase inhibitors. Arch. int. Pharmacodyn. 145, 18 (1963).PubMedGoogle Scholar
  320. Cesarman, T.: Serendipitia y angina de pecho. Informe preliminare sobre un hallazgo tera-peutico. Arch. Inst. Cardiol. Mex. 27, 563 (1957).PubMedGoogle Scholar
  321. Chadwick, B. T., and J. H. Wilkinson: Some aspects of the metabolism of 5-hydroxytrypt-amine. Biochem. J. 76, 102 (1960).PubMedGoogle Scholar
  322. Chalmers, J. G.: The metabolism of isoniazid in rats and mice. Biochem. J. 84, 56P (1962).Google Scholar
  323. Chatagner, F., B Bergeret et J. Labouesse: Influence d’hormones ovariennes et thyroidien-nes sur deux décarboxylases d’acides aminés dans le foie du rat. Mise en évidence de l’existence de deux régulations indépendantes. Biochim. biophys. Acta (Amst.) 35, 231 (1959).Google Scholar
  324. Chatagner, F., B Bergeret, and J. Labouesse-Mercouroff: Comparison of the behavior of two amino acid decarboxylases of rat liver under the influence of injections of hypoxine and under the influence of a deficiency of pyridoxine. Rev. esp. Fisiol. 16, Suppl. 2, 225 (1960). [Chem. Abstr. 55, 4674 (1961).]Google Scholar
  325. Chen, G., and B. Bohner: A comparison of the anti-reserpine effects of certain centrally acting agents. Fed. Proc. 18, 376 (1959).Google Scholar
  326. Chen, G., and B. Bohner: The anti-reserpine effects of certain centrally acting agents. J. Pharmacol. exp. Ther. 131, 179 (1961).PubMedGoogle Scholar
  327. Chen, G., C. R. Ensor, and B. Bohner: A facilitation action of reserpine on the central nervous system. Proc. Soc. exp. Biol. (N. Y.) 86, 507 (1954).Google Scholar
  328. Chen, K. K., C. K. Wu, and E. Henriksen: Relationship between the pharmacological action and the chemical constitution and configuration of the optical isomers of ephedrine and related compounds. J. Pharmacol. exp. Ther. 36, 363 (1929).Google Scholar
  329. Chernov, G. A., and L. M. Morozovskaya: Mechanism of disturbed formation of serotonin during acute radiation sickness. Med. Radiol. 6, 59 (1961) [Chem. Abstr. 57, 13206 (1962)].PubMedGoogle Scholar
  330. Chessin, M., B. Dubnick, E. R. Kramer, and C. C. Scott: Modification of pharmacology of reserpine and serotonin by iproniazid. Fed. Proc. 15, 409 (1956).Google Scholar
  331. Chessin, M., B. Dubnick, E. R. Kramer, and C. C. Scott: Biochemical and pharmacological studies of β-phenyl-ethylhydrazine and selected related compounds. Ann. N. Y. Acad. Sci. 80, 597 (1959).PubMedGoogle Scholar
  332. Chessin, M., E. R. Kramer, and C. C. Scott: Modifications of the pharmacology of reserpine and serotonin by iproniazid. J. Pharmacol. exp. Ther. 119, 453 (1957).PubMedGoogle Scholar
  333. Chidsey, C. A., and D. C. Harrison: Studies on the distribution of exogenous norepinephrine in the sympathetic neurotransmitter store. J. Pharmacol. exper. Ther. 140, 217 (1963).Google Scholar
  334. Chodera, A., V. Z. Gorkin u. L. I. Gridnieva: Über den Wirkungsmechanismus einiger Monoaminoxydase-Hemmer. Acta biol. med. germ. 13, 101 (1964).PubMedGoogle Scholar
  335. Chow, M.-L, and C. D. Hendley: Effect of monoamine oxidase inhibitors on experimental convulsions. Fed. Proc. 18, 376 (1959).Google Scholar
  336. Chruściel, T. L.: Sympatholytic drugs and the dopa awakening effect. Lancet 1961 I, 676.Google Scholar
  337. Chruściel, T. L.: Sympatholytic drugs and some enzymes involved in the metabolism of catecholamines. Int. J. Neuropharmacol. 1, 137 (1962).Google Scholar
  338. Clark, C. T., H. Weissbach, and S. Udenfriend: 5-Hydroxytryptophan decarboxylase: preparation and properties. J. biol. Chem. 210, 139 (1954).PubMedGoogle Scholar
  339. Clark, W. G.: Studies on inhibition of L-dopa decarboxylase in vitro and in vivo. Pharmacol. Rev. 11, 330 (1959).PubMedGoogle Scholar
  340. Clark, W. G.: Amine content and biosynthesis in mastocytomas and octopus salivary glands. Fed. Proc. 19, 9 (1960).Google Scholar
  341. Clark, W. G.: Personal communications 1962.Google Scholar
  342. Clark, W. G.: Inhibition of ammo acid decarboxylase. In: Metabolic Inhibitors, vol. 1, p. 315, edit. R. M. Höchster and J. H. Quastel. London and New York: Academic Press 1963.Google Scholar
  343. Clark, W. G., and R. S. Pogrund: Inhibition of dopa-decarboxylase in vitro and in vivo. Circulat. Res. 9, 721 (1961).PubMedGoogle Scholar
  344. Clark, W. G., R. I. Akawie, W. Drell, and W. J. Hartmann: Inhibition of 3,4-dihydroxyphenyl-alanine (DOPA) decarboxylation in vivo. Abstr. Comm. XX. Int. Physiol. Congr., Brussels 1955, p. 179.Google Scholar
  345. Clegg, R. E., and R. R. Sealock: The metabolism of dihydroxyphenylalanine by guinea pig kidney extracts. J. biol. Chem. 179, 1037 (1949).PubMedGoogle Scholar
  346. Coen, E. D., and R. W. Whitehead: Certain MAO inhibitors as protectors of total body X-irradiation of mice. Fed. Proc. 21, 423 (1962).Google Scholar
  347. Cohen, P. P.: Transamination in pigeon breast muscle. Biochem. J. 33, 1478 (1939).PubMedGoogle Scholar
  348. Cohen, R. A., W. F. Bridgers, J. Axelrod, H. Weil-Malherbe, E. H. Labrosse, W. E. Bunney Jr., P. V. Cardon Jr., and S. S. Kety: The metabolism of the catecholamines (clinical implications). Clinical Staff Conference. Ann. intern. Med. 56, 960 (1962).Google Scholar
  349. Cohen, S. G., and T. M. Sapp: Serotonin-and histamine-affecting agents and experimental vascular sensitization. J. Allergy 31, 248 (1960).PubMedGoogle Scholar
  350. Cohn, V. H., and P. A. Shore: Effect of monoamine oxidase inhibitors on diamine oxidase (histaminase). Fed. Proc. 19, 283 (1960).Google Scholar
  351. Condouris, G. A.: Depressant action of JB-516 (Catron) on peripheral nerve. Pharmacologist 1, 81 (1959).Google Scholar
  352. Condouris, G. A.: Block of nerve conduction by MAO inhibitors. Pharmacologist 4, 175 (1962).Google Scholar
  353. Conway, E. J.: Microdiffusion Analysis and Volumetric Error. London: Lockwood & Son Ltd. 1957.Google Scholar
  354. Cooper, A. J., and K. M. G. Keddie: Hypotensive collapse and hypoglycemia after Mebam-azine — a monoamine oxidase inhibitor. Lancet 1964 I, 1133.Google Scholar
  355. Cooper, A. J., R. V. Magnus, and M. J. Rose: A hypertensive syndrome with tranylcypromine medication. Lancet 1964 I, 527.Google Scholar
  356. Cooper, J. R., J. Axelrod, and B. B. Brodie: Inhibitory effects of β-dietylaminoethyl diphenylpropylacetate on a variety of drug metabolic pathways in vitro. J. Pharmacol. exp. Ther. 112, 55 (1954).PubMedGoogle Scholar
  357. Coq, M. H., et C. Baron: Solubilisation de la monoamineoxydase des mitochondries de foie de rat. Experientia (Basel) 20, 374 (1964).Google Scholar
  358. Coriandoli, E. M., R. Boldrini, and C. Citterio: Different effects exerted by isoniazid upon the coenzyme A and pyridoxine contents of the host’s tumour and tissues. Biochem. Pharmacol. 1, 238 (1959).Google Scholar
  359. Corne, S. J.: The effect of inhibition of amine oxidase on the excretion of administered adrenaline and noradrenaline in cats. J. Physiol. (Lond.) 133, 13P (1956).Google Scholar
  360. Corne, S. J., and J. D. P. Graham: The effect of inhibition of amine oxidase in vivo on administered adrenaline, noradrenaline, tyramine and serotonin. J. Physiol. (Lond.) 135, 339 (1957).Google Scholar
  361. Costa, E.: In vivo inhibition of monoamineoxidase by 2-pbenylcyclopropylamine (SKF 385). Pharmacologist 1, 82 (1959).Google Scholar
  362. Costa, E., and B. B. Brodie: The effect of drugs on storage and release of serotonin and catecholamines in blain. Biochem. Pharmacol. 8, 81 (1961a).Google Scholar
  363. Costa, E., and B. B. Brodie: A role for norepinephrine in ganglionic transmission. J. Amer. Geriat. Soc. 9, 419 (1961b).Google Scholar
  364. Costa, E., G. L. Gessa, C. Hirsch, R. Kuntzman, and B. B. Brodie: On current status of serotonin as a brain neurohormone and in action of reserpinelike drugs. Ann. N.Y. Acad. Sci. 96, 118 (1962).PubMedGoogle Scholar
  365. Costa, E., W. A. Himwich, and H. E. Himwich: 5-HT content of brain structures of dogs given 5-HTP (5-hydroxytryptophan) compared with the degree of behavioral and neurological changes. In: Neuropsychopharmacology, vol. 2, p. 475, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961a.Google Scholar
  366. Costa, E., and G. R. Pscheidt: Reserpine ptosis is unrelated to brain catecholamine levels. Fed. Proc. 19, 279 (1960).Google Scholar
  367. Costa, E., and G. R. Pscheidt: Correlations between active evelid closure and depletion of brain biogenic amines by reserpine. Proc. Soc. exp. Biol. (N.Y.) 106, 693 (1961).Google Scholar
  368. Costa, E., W. G. Van Meter, and H. E. Himwich: Brain concentrations of biogenic amines and EEG patterns of rabbits. J. Pharmacol. exp. Ther. 130, 81 (1960).PubMedGoogle Scholar
  369. Costa, E., A. M. Revzin, R. Kuntzman, S. Spector, and B. B. Brodie: Evidence that norepinephrine in sympathetic ganglia modulates sympathetic synaptic transmission. Fed. Proc. 20, 319 (1961b).Google Scholar
  370. Costa, E., A. M. Revzin, R. Kuntzman, S. Spector, and B. B. Brodie: Role for ganglionic norepinephrine in sympathetic synaptic transmission. Science 133, 1822 (1961c).PubMedGoogle Scholar
  371. Cotzias, G. C., and V. P. Dole: Metabolism of amines. I. Microdetermination of monoamine oxidase in tissues. J. biol. Chem. 190, 665 (1951a).PubMedGoogle Scholar
  372. Cotzias, G. C., and V. P. Dole: Metabolism of amines. II. Mitochondrial localization of monoamine oxidase. Proc. Soc. exp. Biol. (N.Y.) 78, 157 (1951b).Google Scholar
  373. Cotzias, G. C., and V. P. Dole: The activity of histaminase in tissues. J. biol. Chem. 196, 235 (1952).PubMedGoogle Scholar
  374. Cotzias, G. C., and J. J. Greenough: Concomitant analysis for oxygen uptake and ammonia evolution during the monoamine oxidase reaction. Arch. Biochem. 75, 15 (1958).PubMedGoogle Scholar
  375. Cotzias, G. C., and J. J. Greenough: Quantitative estimation of amineoxidase. Nature (Lond.) 183, 1732 (1959).Google Scholar
  376. Cotzias, G. C., and J. J. Greenough: Dependence of periodic activation and inhibition of monoaminoxidase by aliphatic compounds upon chainlength. Nature (Lond.) 185, 384 (1960).Google Scholar
  377. Cotzias, G. C., I. Serlin, and J. J. Greenough: Preparation of soluble monoamine oxidase. Science 120, 144 (1954).PubMedGoogle Scholar
  378. Crane, G. E., and M. Wolfman: Studies on the urinary excretion of 5-hydroxyindol-acetic acid and 17-hydroxycorticosteroids in patients treated with Marsilid. J. nerv. ment. Dis. 130, 134 (1960).PubMedGoogle Scholar
  379. Creasey, N. H.: Factors which interfere in the manometric assay of monoamine oxidase. Biochem. J. 64, 178 (1956).PubMedGoogle Scholar
  380. Credner, K., G. Renwanz u. H.-J. Hinze: Untersuchungen über das Verhalten des m-Hydroxyphenyl(1)-äthanol(1)-amin(2)-hydrochlorids im Organismus. Naunyn-Schmiede-bergs Arch. exp. Path. Pharmak. 243, 85 (1962).Google Scholar
  381. Crema, A., e F. Berte: L’azione di alcuni inibitori delle monoamine-ossidasi sull’edema sperimentale della zampa di ratto. Boll. Soc. ital. Biol. sper. 36, 1069 (1960).PubMedGoogle Scholar
  382. Creveling, C. R., J. W. Daly, B. Witkop, and S. Udenfriend: Substrates and inhibitors of dopamine-β-oxidase. Biochim. biophys. Acta (Amst.) 64, 125 (1962).Google Scholar
  383. Creveling, C. R., and S. Udenfriend: Conversion of 3,4-dihydrcxyphenylalanine to norepinephrine by brain homogenates. Fed. Proc. 18, 379 (1959).Google Scholar
  384. Crout, J. R., Effect of inhibiting both catechol-0-methyl transferase and monoamine oxidase on cardiovascular responses to norepinephrine. Proc. Soc. exp. Biol. (N.Y.) 108, 482 (1961).Google Scholar
  385. Crout, J. R., C. R. Creveling, and D. Caton: Metabolism of norepinephrine by rat brain and heart. Fed. Proc. 19, 297 (1960).Google Scholar
  386. Crout, J. R., and P. A. Shore: Release of metaraminol (Aramine) from the heart by sympathetic nerve stimulation. Clin. Res. 12, 180 (1964).Google Scholar
  387. Crout, J. R., and P. A. Shore., S. Udenfriend: Norepinephrine metabolism in rat brain and heart. J.Pharmacol. exp. Ther. 132, 269 (1961).PubMedGoogle Scholar
  388. Crowther, A. F., A. Spinks, and E. H. P. Young: The relation between structure and central nervous action of some hvdrazine derivatives. Int. J. Neuropharmacol. 1, 141 (1962).Google Scholar
  389. Crumpton, C. W., C.A. Castillo, G. G. Rowe, and G.M.Maxwell: Serotonin and the dynamics of the heart. Ann. N.Y. Acad. Sci. 80, 960 (1959).PubMedGoogle Scholar
  390. Csilik, B.: Histochemical model experiments on the effect of various drugs on the catecholamine content of adrenergic nerve terminals. J. Neurochem. 11, 351 (1964).Google Scholar
  391. Culley, W. J., R. N. Saunders, D. H. Jolly, and E. T. Mertz: Reduction of brain serotonin levels in rats fed phenylpyruvic acid. Fed. Proc. 21, 364 (1962).Google Scholar
  392. Curzon, G.: The excretion of indoles in argentoffinoma. Arch. Biochem. 66, 497 (1957).PubMedGoogle Scholar
  393. Culley, W. J., Coeruloplasmin. In: Genetic defects of biologically active proteins, p. 109, edit. F. Linneweh. München u. Berlin 1962.Google Scholar
  394. Dacosta, F. M., and L. J. Goldberg: Depression of ganglionic transmission by MO-911 (N-methyl-N-benzyl-2-propynylamine hydrochloride), a non-hydrazine monoamine oxid-ase inhibitor Fed. Proc. 20, 318 (1961).Google Scholar
  395. Dalgliesh, C. E., and R. W. Dutton: Biogenesis of 5-hydroxytryptophan. Brit. J. Cancer 11, 296 (1957).PubMedGoogle Scholar
  396. Daly, J.W., J. Axelrod, and B. Witkop: Methylation and demethylation in relation to the in vitro metabolism of mescaline. Ann. N.Y. Acad. Sci. 96, 371 (1962).Google Scholar
  397. Dandiya, P. C., H. Cullumbine, and E. A. Sellers: Studies on acorus calamus. (IV): Investigations on mechanism of action in mice. J. Pharmacol. exp. Ther. 126, 334 (1959).PubMedGoogle Scholar
  398. Datta, R. K., and J. J. Ghosh: Effect of strychnine sulphate and nialamide on hydrogen bonded structure of ribonucleic acid of brain cortex ribosomes. J. Neurochem. 11, 357 (1964).PubMedGoogle Scholar
  399. Dat-Xuong, N., M. Duchene-Marullaz, J. Vacher et N. P. Buu-Hoi: Activité anti-monoamineoxydase de divers dérivés des nicotinyl-et isonicotinylhydrazines. Med. exp. (Basel) 7, 85 (1962).Google Scholar
  400. Davey, M. J., J. B. Farmer, and H. Reinert: Hypotension and monoaminoxydase inhibitors. Chemotherapia (Basel) 4, 314 (1962).Google Scholar
  401. Davey, M. J., J. B. Farmer, and H. Reinert: The effects of nialamide on adrenergic functions. Brit. J. Pharmacol. 20, 121 (1963).PubMedGoogle Scholar
  402. Davis, E. J., and R. S. De Ropp: The effect of some monoamine oxidase inhibitors on amine excretion in the rat. Biochem. biophys. Res. Commun. 2, 361 (1960).Google Scholar
  403. Davis, E. J., and R. S. De Ropp: Metabolic origin of urinary methylamine in the rat. Nature (Lond.) 190, 636 (1961).Google Scholar
  404. Davis, R. A., D. J. Drain, M. Horlington, R. Lazare, and A. Urbanska: The effect of L-α-methyl dopa and N-2-hydroxybenzyl-N-hydrazine (NSD 1039) on the blood pressure of renal hypertensive rats. Life Sci. 2, 193 (1963).Google Scholar
  405. Davis, R. B., C. S. Alexander, and A. Adicoff: Metabolic studies in carcinoid syndrome: observations on use of α-methyl dopa, isonicotinic acid hydrazide and selective trypto-phan deficiency. Metabolism 10, 1035 (1961).PubMedGoogle Scholar
  406. Davis, R. B., B. W. Brown, W. R. Meeker, R. K. Ausman, and W. L. Bailey: Effects of amine oxidase inhibition on E. coli endotoxin mortality in mice. Proc. Soc. exp. Biol. (N.Y.) 109, 412 (1962).Google Scholar
  407. Davis, V. E.: Effect of cortisone and thyrosine on aromatic amino acid decarboxylation. Endocrinology 72, 33 (1963).PubMedGoogle Scholar
  408. Davis, V. E., and J. Awapara: Mammalian ortho-tyrosin decarboxylase. Fed. Proc. 19, 5 (1960a).Google Scholar
  409. Davis, V. E., and J. Awapara: A method for the determination of some amino acid decarboxylases. J. biol. Chem. 235, 124 (1960b).PubMedGoogle Scholar
  410. Davis, V. E., C. Hanly, and J. Awapara: Decarboxylation of o-tyrosine and 5-hydroxytryptophan by tissues of rats treated with cortisone and tyroxine. Biochem. Pharmacol. 8, 127 (1961).Google Scholar
  411. Davison, A. N.: The mechanism of the inhibition of decarboxylases by isonicotinyl hydrazide. Biochim. biophys. Acta (Amst.) 19, 131 (1956).Google Scholar
  412. Davison., A. N. The mechanism of the irreversible inhibition of rat-liver monoamine oxidase by iproniazid (Marsilid). Biochem. J. 67, 316 (1957).PubMedGoogle Scholar
  413. Davison., A. N. The irreversible inhibition of monoamine oxidase in vivo. Arch. Biochem. 77, 368 (1958a).PubMedGoogle Scholar
  414. Davison., A. N. Inhibition of brain monoamine oxidase. Bull. Soc. Chim. biol. (Paris) 40, 1737 (1958b).Google Scholar
  415. Davison., A. N. Physiological role of monoamine oxidase. Physiol. Rev. 38, 729 (1958c).PubMedGoogle Scholar
  416. Davison., A. N. Unpublished results.Google Scholar
  417. Davison., A. N. A. W. Lessen, and M. W. Parkes: The antagonism of reserpine hypothermia by iproniazid. Experientia (Basel) 13, 329 (1957).Google Scholar
  418. Davison., A. N., and M. Sandler: Monoamine oxidase activity in the argentaffin carcinoma syndrome. Clin. chim. Acta 1, 450 (1956).PubMedGoogle Scholar
  419. Davison., A. N., and M. Sandler: Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Nature (Lond.) 181, 186 (1958).Google Scholar
  420. Dawson, A.M., and S. Sherlock: The effect of the amine oxidase inhibitor Marsilid on ammonium metabolism in liver disease. Clin. Sci. 17, 587 (1958).PubMedGoogle Scholar
  421. Day, M.: Effect of sympathomimetic amines on the blocking action of guanethidine, bretylium and xylocholine. Brit. J. Pharmacol. 18, 421 (1962).PubMedGoogle Scholar
  422. Day, M.: The uptake of biogenic amines by neoplastic mast cells in culture. J. Physiol. (Lond.) 164, 227 (1962b).Google Scholar
  423. Day, M., and J. P. Green: The uptake of amino acids and the synthesis of amines by neoplastic mastcells in cultures. J. Physiol. (Lond.) 164, 210 (1962a).Google Scholar
  424. Day, M., and M.J. Rand: A hypothesis for the mode of action of α-methyLdopa in relieving hypertension. J. Pharm. (Lond.) 15, 221 (1963).Google Scholar
  425. Day, M., and M.J. Rand: Some observations on the pharmacology of α-methyl dopa. Brit. J. Pharmacol. 22, 72 (1964).PubMedGoogle Scholar
  426. Degkwitz, R., R. Frowein, C. Kulenkampff u. U. Mohs: Über die Wirkung des L-Dopa beim Menschen und deren Beeinflussung durch Reserpin, Chlorpromazin, Iproniazid und Vitamin B6. Klin. Wschr. 38, 120 (1960).PubMedGoogle Scholar
  427. Delahunt, C. S., and J. Pepin: Toxicology of nialamide, a monoamine oxidase inhibitor. Fed. Proc. 18, 474 (1959a).Google Scholar
  428. Delahunt, C. S., and J. Pepin: Toxicology of nialamide, a new psychotherapeutic agent. Toxicol. appl. Pharmacol. 1, 524 (1959b).PubMedGoogle Scholar
  429. Delgado, J. M. R.: Pharmacological modifications of social behaviour. Biochem. Pharmacol. 8, 131 (1961).Google Scholar
  430. Demis, D. J., H. Blaschko, and A. D. Welch: The conversion of dihydroxyphenylalanine-2-C14 (DOPA) to norepinephrine by bovine adrenal medullary homogenates. J. Pharmacol. exp. Ther. 117, 208 (1956).PubMedGoogle Scholar
  431. Dengler, H. J.: Die Wirkung des α-Methyldopa auf die Aufnahme und den Stoffwechsel von markiertem Noradrenalin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 296 (1964).Google Scholar
  432. Dengler, H. J., E. Rauchs u. W. Rummel: Zur Hemmung der L-Glutaminsäure-und L-Dopadecarboxy-lase durch D-Cycloserin und andere Isoxazolidone. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 366 (1962).Google Scholar
  433. Dengler, H. J., u. G. Reichel: Die Beeinflussung der Blutdruckwirkung von Dopa und Dops durch einen Decarboxylase-Inhibitor. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 232, 324 (1957/1958).Google Scholar
  434. Dengler, H. J., u. G. Reichel: Hemmung der Dopadecarboxylase durch α-methyl-dopa in vivo. Naunyn-Schmiede-bergs Arch. exp. Path. Pharmak. 234, 275 (1958).Google Scholar
  435. Denys, A., J. Levy et E. Michel-Ber: Comparaison, chez la souris, d’effets antidépresseurs centraux provoqués par l’administration aiguë et chronique d’un inhibiteur de la mono-amine-oxydase (hydrazino-2-octane, D-1514), d’un précurseur des amines catéchiques (Dopa) et de leur association. J. Physiol. (Paris) 53, 327 (1961).Google Scholar
  436. Deoreo, G. A., and R.B. Stoughton: Monoamine oxidase and catechol O-methyl trans-ferase inhibitors. Arch. Derm. 84, 972 (1961).PubMedGoogle Scholar
  437. Dewhurst, W. G., and C. M. B. Pare: A clinical and biochemical study of monoamine oxidase inhibition in depressed patients. II. 5-Hydroxytryptamine tolerance before and after nialamide. J. ment. Sci. 107, 244 (1961).PubMedGoogle Scholar
  438. Dickens, F.: LXXVII. The metabolism of normal and humor tissue. XII. The action of phenylhydrazine on the Pasteur reaction and on tissue respiration. Biochem. J. 28, 537 (1934).PubMedGoogle Scholar
  439. Dietrich, L. S.: A rapid method for the determination of dihydroxyphenylalanine decar-boxylase in animal tissues. J. biol. Chem. 204, 587 (1953).PubMedGoogle Scholar
  440. Dietrich, L. S., and D. M. Shapiro: Testosterone augmentation of deoxypyridoxine antagonism of various vitamin B6-containing enzyme systems in tumor and host tissue. Cancer Res. 15, 133 (1955).PubMedGoogle Scholar
  441. Dischler, W.: Der Einfluβ langdauernder Behandlung mit Reserpin, Iproniazid und 5-Oxytryptamin auf den Oestrus-Zyklus von Mäusen erbreiner Stämme. Naturwissenschaften 47, 401 (1960).Google Scholar
  442. Dobkin, A. B.: Drugs which stimulate affective behaviour. 2. Comparison of the analeptic effect of dl-amphetamine, bemigride with amiphenazole, methylphenidyl-acetate, iproniazid (micoren) and RP 8228. Anaesthesia 15, 146 (1960).PubMedGoogle Scholar
  443. Dollery, C. T., and M. Harington: Methyldopa in hypertension: clinical and pharmacological studies. Lancet 1962 I, 759.Google Scholar
  444. Domenjoz, R., u. H. Schellenberg: Pharmakologische Untersuchungen am 5-Hydroxy-tryptamin-Stoffwechsel des Mastocytom P-815. Schweiz. med. Wschr. 92, 1185 (1962).PubMedGoogle Scholar
  445. Drain, D. J., M. Horlington, R. Lazare, and G. A. Poulter: The effect of α-methyl dopa and some other decarboxylase inhibitors on brain 5-hydroxytryptamine. Life Sci. 1962, 93.Google Scholar
  446. Drain, D. J., J. G. B. Howes, R. Lazare, A. M. Salaman, R. Shadbolt, and H. W. R. Williams: Monoamine oxidase inhibitors. The synthesis and evaluation of a series of substituted alkylhydrazines. J. med. pharm. Chem. 6, 63 (1963).Google Scholar
  447. Drell, W.: Separation of catecholamines from catechol acids by alumina. Fed. Proc. 16, 174 (1957).Google Scholar
  448. Dreyfus, P.M., and G. Häuser: A simple micromethod for the collection of radioactive carbon dioxide in decarboxylation experiments. Mikrochim. ichnoanal. Acta 1964, 150.Google Scholar
  449. Dubach, U., and O. Gsell: Carcinoid syndrome: alleviation of diarrhoea and flushing with „Deseril“ and Ro 5-1025. Brit. med. J. 1962 I, 1390.Google Scholar
  450. Dubnick, B., G. A. Leeson, and G. E. Phillips: In vivo inhibition of serotonin synthesis in mouse brain by β-phenylethylhydrazine, an inhibitor of monoamine oxidase. Fed. Proc. 18, 218 (1959a).Google Scholar
  451. Dubnick, B., G. A. Leeson, and G. E. Phillips: An effect of monoamine oxidase inhibitors on brain serotonin possibly in addition to that resulting from inhibition of monoamine oxidase. Pharmacologist 1, 74 (1959b).Google Scholar
  452. Dubnick, B., G. A. Leeson, and G. E. Phillips: In vivo-inhibition of serotonin synthesis in mouse brain by β-phenylethylhydrazine, an inhibitor of MAO. Biochem. Pharmacol. 11, 45 (1962a).PubMedGoogle Scholar
  453. Dubnick, B., G. A. Leeson, and G. E. Phillips: An effect of monoamine oxidase inhibitors on brain serotonin of mice in addition to monoamine oxidase. J. Neurochem. 9, 299 (1962b).PubMedGoogle Scholar
  454. Dubnick, B., C. C. Scott: Effect of forms of vitamin B6 on acute toxicity of hydrazines. Toxicol. appl. Pharmacol. 2. 403 (1960).PubMedGoogle Scholar
  455. Dubnick, B., D. F. Morgan, and G. E. Phillips: Inhibition of monoamine oxidase (MAO) by 2-methyl-3-piperidinopyrazine. Pharmacologist 4, 177 (1962c).Google Scholar
  456. Dubnick, B., D. F. Morgan, and G. E. Phillips: Inhibition of monoamine oxidase by 2-methyl-3-piperidinopyrazine. Ann. N.Y. Acad. Sci. 107, 914 (1963).Google Scholar
  457. Duhm, B., W. Maul, H. Medenwald, K. Patzschke, and L.-A. Wegner: Tierexperimentelle Untersuchungen mit radioaktiv markiertem α-Methyldopa. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 246, 10 (1963).Google Scholar
  458. Dupasquier, E., et F. Reubi: Les répercussions de l’iproniazide (Marsilid) sur la tension artérielle et l’hémodynamique rénale. Cardiologia (Basel) 35, 256 (1959).Google Scholar
  459. Duve, C. De, H. Beaufay, P. Jacques, Y. Rahman-Li, O. Z. Sellinger, R. Wattiaux, and S. De Coninck: Intracellular localization of catalase and some oxidases in rat liver. Biochim. biophys. Acta (Amst.) 40, 186 (1960).Google Scholar
  460. Dvornik, D., M. Kraml, J. Dubuc, H. Tom, and T. Zsoter: The effect of some inhibitors of the postganglionic sympathetic mechanism on monoamine oxidase. Biochem. Pharmacol. 12, 229 (1963).Google Scholar
  461. Eberholst, I., I. Huus u. R. Kopf: Zum Wirkungsmechanismus der Potenzierung von Hexobarbital durch Captodiamin. Arzneimittel-Forsch. 8, 379 (1958).Google Scholar
  462. Eberson, L. E., and K. Persson: Studies on monoamine oxidase inhibitors. I. The autoxi-dation of β-phenylisopropylhydrazine as a model reaction for irreversible monoamine oxidase inhibition. J. med. pharm. Chem. 5, 738 (1962).Google Scholar
  463. Eberts jr., F. S.: Metabolic studies with 3-(2-aminobutyl-l-C14) indole acetate (Monase-C14). I. Distribution and excretion in rat, dog and man. J. Neuropsychol. 2, 146 (1961).Google Scholar
  464. Eberts jr., F. S., and E.G. Daniels: Metabolism of 3-(2-aminobutyl-l-C14) indole acetate (etryptamine acetate) by man. Fed. Proc. 21, 180 (1961).Google Scholar
  465. Eble, J. N.: The depressor effect of tryptamine in the chicken: Absence of tachyphylaxis and reversal following monoamine oxidase inhibitors. Fed. Proc. 21, 330 (1962).Google Scholar
  466. Ebnöther, A., E. Jucker, A. Lindemann, E. Rissi, R. Steiner, R. Süess u. A. Vogel: Neue basisch substituierte Hydrazin-Derivate. Helv. chim. Acta 42, 533 (1959).Google Scholar
  467. Eder, M.: Der histochemische Nachweis des Fermentes Monoaminoxydase; Entwicklung einer Nachweismethode und deren Anwendung. Beitr. path. Anat. 117, 343 (1957).Google Scholar
  468. Eechaute, W., E. Lacroix, I. Leusen et J. J. Bouckaert: L’activité du cortex surrénalien sous l’influence de la réserpine et de l’iproniazide. Arch. int. Pharmacodyn. 139, 403 (1962).Google Scholar
  469. Ehringer, H., O. Hornykiewicz u. K. Lechner: Die Wirkungen des Chlorpromazins auf den Katecholamin-und 5-Hydroxytryptamin-Stoffwechsel im Gehirn der Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 507 (1960).Google Scholar
  470. Ehringer, H., O. Hornykiewicz u. K. Lechner: Die Wirkung von Methylenblau auf die Monoaminoxydase und den Catecholamin-und 5-Hydroxytryptamin-Stoffwechsel des Gehirns. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 241, 568 (1961).Google Scholar
  471. Eiduson, S.: Effects of dopa, 5-HTP and iproniazide on self-stimulation of the brain. Fed. Proc. 18, 221 (1959).Google Scholar
  472. Ellinger, A.: Bildung von Putrescin (Tetramethylendiamin) aus Ornithin. Ber. dtsch. chem. Ges. 31, 3183 (1898).Google Scholar
  473. Ellinger, A.: Die Konstitution des Ornithins und des Lysins. Zugleich ein Beitrag zur Chemie der Eiweiβfäulnis. Hoppe-Seylers Z. physiol. Chem. 29, 334 (1900).Google Scholar
  474. Elliot, K. A. C., and N. M. Van Gelder: The state of factor I in rat brain: The effects of metabolic conditions and drugs. J. Physiol. (Lond.) 153, 423 (1960).Google Scholar
  475. Ellison, T., and C. C. Scott: Effects in the rat of chronic dietary supplementation with a monoamine oxidase inhibitor, tranylcypromine. Toxicol. appl. Pharmacol. 6, 411 (1964).PubMedGoogle Scholar
  476. Elmadjian, F.: Excretion and metabolism of epinephrine. Pharmacol. Rev. 11, 409 (1959).PubMedGoogle Scholar
  477. Eltherington, L. G.: A possible role of dopamine in cardiovascular “reserpine reversal”. Fed. Proc. 20, 89 (1961).Google Scholar
  478. Eltherington, L. G., and A. Horita: Some pharmacological actions of β-phenylisopropylhydrazine (PIH). J. Pharmacol. exp. Ther. 128, 7 (1960).PubMedGoogle Scholar
  479. Emele, J. F., J. E. Shanaman, and M. R. Warren: Phenelzine — a neuropharmacological study. Fed. Proc. 19, 277 (1960).Google Scholar
  480. Emele, J. F., J. E. Shanaman, and M. R. Warren: The analgesic activity of phenelzine and other compounds. J. Pharmacol. exp. Ther. 134, 206 (1961).PubMedGoogle Scholar
  481. Emele, J. F., J. E. Shanaman, and M. R. Warren: Analgesic activity of monoamine oxidase inhibitors. Fed. Proc. 18, 387 (1959).Google Scholar
  482. Engel, A., and u. S. Von Eitler: Diagnostic value of increased urinary output of noradre-naline and adrenaline in phaeochromocytoma. Lancet 1950 II, 387.Google Scholar
  483. Epps, H. M. R.: The development of amine oxidase activity by human tissues after birth. Biochem. J. 39, 37 (1945).PubMedGoogle Scholar
  484. Ernst, A. M., H. Van Andel u. G. A. Charbon: Beruht die experimentelle Katatonie durch Tryptamin auf einer Verdrängung des 5-Hvdroxytryptamin? Psychopharmacologie 2, 425 (1961).Google Scholar
  485. Ernsting, M. J. E., W. F. Kafoe, W. T. Nauta, H. K. Oosterhuis, and C. De Waart: Biochemical studies on psychotropic drugs. I. The effect of psychotropic drugs on γ aminobutyric acid and glutamic acid in brain tissue. J. Neurochem. 5, 121 (1960).PubMedGoogle Scholar
  486. Ernsting, M. J. E., W. F. Kafoe, W. T. Nauta, and P. A. Roukema: Investigation into the effect of orphenadrine hydrochloride (Disipal) on the monoamine oxidase in the brain and liver of rats and guinea pigs. Med. exp. (Basel) 7, 119 (1962).Google Scholar
  487. Erspamer, V.: Recent research in the field of 5-hydroxytryptamine and related indolealkyl-amines. In: Progress in Drug Research, vol. 3, p. 151, edit. E. Jucker. Basel: Birkhäuser 1961.Google Scholar
  488. Erspamer, V., and G. Bertaccini: Observations on the antidiuretic action and the fate of 5-hydroxy-DL-tryptophan in the rat organism. Arch. int. Pharmacodyn. 137, 6 (1962).PubMedGoogle Scholar
  489. Erspamer, V., R. Ferrini, and A. Glässer: A note on the oxidative deamination of isomers of 5-hydroxytryptamine and other indolealkylamines. J. Pharmacol. 12, 761 (1960a).Google Scholar
  490. Erspamer, V., A. Glässer, and M. B. Nobili: The fate of 5-hydroxy-X-acetyltryptophan and 5-ace-toxy-N-acetyltryptophan in the rat organism. Arch. Biochem. 93, 673 (1961a).PubMedGoogle Scholar
  491. Erspamer, V., A. Glässer, and C. Pasini: The fate of 4-hydroxytrvptophan in the rat organism. Experientia (Basel) 16, 506 (1960b).Google Scholar
  492. Erspamer, V., A. Glässer, C. Pasini, and G. Stoppani: In vitro decarboxvlation of tryptophan by mammalian decarboxylase. Nature (Lond.) 189, 483 (1961b).Google Scholar
  493. Erspamer, V., and M. B. Nobili: Observations on the fate of 4-hydroxy-DL-tryptophan in the organism. of the rat and man. Arch. int. Pharmacodyn. 137, 24 (1962).PubMedGoogle Scholar
  494. Estler, C.-J.: Untersuchungen über die Wirkung von Iproniazid auf einige Funktionen und Metaboliten des Gehirns weiβer Mäuse und über die Modifizierung der Reserpinwirkung durch Iproniazid. Med. exp. 7, 335 (1962).Google Scholar
  495. Eüler, U. S. Von, and S. Hellner-Björkman: Effect of amine oxidase inhibition on the noradrenaline and adrenaline content of cat organs. Acta physiol. scand. 33, Suppl. 118, 21 (1955).Google Scholar
  496. Eüler, U. S. Von, and I. Orwén: Preparation of extracts of urine and organs for estimation of free and conjugated noradrenaline and adrenaline. Acta physiol. scand. 33, Suppl. 118, 1 (1955).Google Scholar
  497. Evans, W. O.: A new technique for the investigation of some analgesic drugs on a reflexive behavior in the rat. Psychopharmacologia (Berl). 2, 318 (1961).Google Scholar
  498. Everett, G. M.: Some electrophysiological and biochemical correlates of motor activity and aggressive behaviour. In: Neuropsychopharmacology, vol.2, p. 479, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961.Google Scholar
  499. Everett, G. M., J. C. Davin, and J. E. P. Toman: Pharmacological studies of monoamine oxidase inhibitors. Fed. Proc. 18, 388 (1959).Google Scholar
  500. Everett, G. M., and R. G. Wiegand: Non-hydrazide monoamine oxidase inhibitors and their effects on central amines and motor behaviour. Biochem. Pharmacol. 8, 163 (1961).Google Scholar
  501. Everett, G. M., and R. G. Wiegand., and F. U. Rinaldi: Pharmacologic studies of some nonhydrazine MAO inhibitors. Ann. N.Y. Acad. Sci. 107, 1068 (1963).Google Scholar
  502. Ewins, A. J., and P. P. Laidlaw: The fate of parahydroxyphenylethylamine in the organism. J. Physiol. (Lond.) 41, 78 (1910/11).Google Scholar
  503. Ewins, A. J., and P. P. Laidlaw: II. The fate of indolethylamine in the organism. Biochem. J. 7, 18 (1913).PubMedGoogle Scholar
  504. Fabre, J., M. Rudhardt et B. Michel: L’action d’un inhibiteur de la monoamineoxydase sur l’extension des thromboses veineuses et artérielles. Schweiz. med. Wschr. 94, 894 (1964).PubMedGoogle Scholar
  505. Fabre, J., G. Lacourt et J. Jeandet: Action d’un inhibiteur de la monoamine-oxydase (Niamid) sur diverses lésions vasculaires expérimentales chez le lapin (artérite allergique, nécroses myocardiques par l’isoprotérénol, médionécrose aortique, thromboses veineuses et artérielles). Chemoterapia 4, 237 (1962).Google Scholar
  506. Fastier, F. N., and J. Hawkins: Inhibition of amine oxidase by isothiourea derivatives. Brit. J. Pharmacol. 6, 256 (1951).PubMedGoogle Scholar
  507. Feldstein, A., H. Hoagland, and H. Freeman: Monoamine oxidase, psychoenergizers and tranquilizers. Science 130, 500 (1959).PubMedGoogle Scholar
  508. Feldstein, A., M. R. Riviera, and H. Freeman: A preliminary report on MAO inhibition and clinical effectiveness in the treatment of depressed patients with phenelzine. J. Neuropsychiat. 2, 12 (1960).PubMedGoogle Scholar
  509. Feldstein, A., M. R. Riviera, and H. Freeman: The effect of monoamine oxidase inhibitors on the metabolism of serotonin and epinephrine. J. Neuropsychiat. 3, 83 (1961).PubMedGoogle Scholar
  510. Fellmann, J. H.: Inhibition of DOPA decarboxylase by aromatic acids associated by phenyl-pyruvic oligophrenia. Proc. Soc. exp. Biol. (N.Y.) 93, 413 (1956).Google Scholar
  511. Fellmann, J. H.: The oxidation of 3,4-dihydroxyphenylacetaldehyde. Biochim. biophys. Acta (Amst.) 35, 530 (1959a).Google Scholar
  512. Fellmann, J. H.: Purification and properties of adrenal L-DOPA decarboxylase. Enzymologia 20, 366 (1959b).Google Scholar
  513. Fellows, E. J., and F. Bernheim: The effect of a number of aralkylamines on the oxidation of tyramine by amine oxidase. J. Pharmacol. exp. Ther. 100, 94 (1950).PubMedGoogle Scholar
  514. Febrari, R. A., and A. Arnold: The effect of central nervous system agents on rat-brain γ-aminobutyric acid level. Biochim. biophys. Acta (Amst.) 52, 361 (1961).Google Scholar
  515. Ferrini, R., and A. Glässer: In vitro decarboxylation of new phenylalanine derivatives. Biochem. Pharmacol. 13, 798 (1964).PubMedGoogle Scholar
  516. Ferster, C. B., and M. H. Aprison: Increased behavioral effects of 5-hydroxytryptophan by iproniazid pretreatment. Pharmacologist 1, 75 (1959).Google Scholar
  517. Finger, K. F.: Biochemical aspects of the action of nialamide. Fed. Proc. 19, 278 (1960).Google Scholar
  518. Finger, K. F., J. N. Pereira, and J. A. Schneider: The influence of nialamide on the reserpine induced mobilization of fat and carbohydrate stores. Fed. Proc. 21, 175 (1962).Google Scholar
  519. Finkelstein, J., J. A. Romano, E. Chiang, and J. Lee: Monoamine oxidase inhibitors. IV. Some dialkylaminophenylalkylhydrazines and related compounds. J. med. Chem. 6, 153 (1963).PubMedGoogle Scholar
  520. Fisher, M. N., E. R. Mamlok, A. Tendlau, E. H. Tebrock, A. E. Drumm, and A. Spiegelman: Isonicotinic acid hydrazide and its derivatives in tuberculosis. An evaluation of the side-effects in relation to peripheral circulation. N.Y. St. J. Med. 12, 1519 (1952).Google Scholar
  521. Fisher, T. N.: Current concepts of monoamine oxidase inhibitors. Marquette med. Rev. 27, 86 (1962). [Chem. Abstr. 56, 14865 (1962).]PubMedGoogle Scholar
  522. Flückiger, E., and R. Salzmann: Effect of iproniazid on pregnancy. Experientia (Basel) 17, 130 (1961).Google Scholar
  523. Flury, F.: Beiträge zur Pharmakologie der Steppenraute (Peganum Harmala). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 64, 105 (1911).Google Scholar
  524. Földes, I., u. J. Pälinkas: Weitere Untersuchungen über die Wirkung von Serotonin (5-Hydroxytryptamin) auf den Gasstoffwechsel weiβer Ratten. Arch. int. Pharmacodyn. 127, 331 (1960).PubMedGoogle Scholar
  525. Förster, W., u. M. Kunze: Der Einfluss von Iproniazid auf die antiemetische Wirkung von Reserpin, Rescinnamin, Raubasin (Ajmalicin), Tetrabenazin und Chlorpromazin bei Hunden und Katzen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 241, 195 (1961).Google Scholar
  526. Folkerth, T. L., and M. H. Aprison: Comparison of the recovery of monoamine oxidase activity after treatment with trans-2-phenylcyclopropylamine (SKF 385) and beta phenyl-isopropyl hydrazine (JB 516). Pharmacologist 4, 169 (1962).Google Scholar
  527. Fontanini, F., P. L. Prati e U. Barbieri: Influenza dell’iproniazide sull’effetto permeabiliz-zante capülare della 5-idrossitriptamina. Boll. Soc. med.-chir. Modena 58. 240 (1958). [Excerpta med. (Amst.), Sect. II 13, 124 (I960).]Google Scholar
  528. Fouts, J. R.: Monoamines as substrates of diamine oxidase. Fed. Proc. 13, 210 (1954).Google Scholar
  529. Fouts, J. R., L. A. Blanksma, J. A. Carbon, and E. A. Zeller: XIII. Monoamines as substrates of diamine oxidase. J. biol. Chem. 225, 1025 (1957).PubMedGoogle Scholar
  530. Fouts, J. R., and B. B. Brodie: Inhibition of drug metabolic pathways by the potentiating agent, 2,4-dichloro-6-phenyl-phenoxyethyl diethylamine. J. Pharmacol. exp. Ther. 115, 68 (1955).PubMedGoogle Scholar
  531. Fouts, J. R., and B. B. Brodie: On the mechanism of drug potentiation by iproniazid (2-isopiopyl-l-isonicotinyl hydrazine). J. Pharmacol. exp. Ther. 116, 480 (1956).PubMedGoogle Scholar
  532. Francis, C. M.: Histochemical demonstration of amine oxidase in liver. Nature (Lond.) 171, 701 (1953).Google Scholar
  533. Franco-Browder, S., G. M. C. Masson, and A.C. Corcoran: PHARMACOLOGIC characterization of reserpine responses in rats pre-tieated with iproniazid. Proc. Soc. exp. Biol. (N.Y.) 97, 778 (1958).Google Scholar
  534. Franco-Browder, S., G. M. C. Masson, and A.C. Corcoran: Induction of acute gastric lesions by histamine liberators in rats. J. Allergy 30 1 (1959).PubMedGoogle Scholar
  535. Freedman, D. N., and N. J. Giarman: LSD-25 and the status and level of brain serotonin. Ann. N.Y. Acad. Sci. 96, 98 (1962).PubMedGoogle Scholar
  536. Fréter, K., H. Weissbach, B. G. Redfield, S. Udenfriend, and B.Witkop: Oxindole analogs of (5-hydroxy)-tryptamine and-tryptophan, as inhibitors of the biosynthesis and breakdown of serotonin. J. Amer. chem. Soc. 80, 983 (1958).Google Scholar
  537. Fréter, K., H. Weissbach., S. Udenfriend, and B.Witkop: Biochemical and pharmacological studies with D-and L-5-hydroxytryptophan. Proc. Soc. exp. Biol. (N.Y.) 97, 725 (1957).Google Scholar
  538. Frey, H.-H.: Monoamine oxidase inhibition and sensitivity of the nictitating membrane to noradrenaline. Acta pharmacol. (Kbh.) 20, 90 (1963).Google Scholar
  539. Freyburger, W. A., B. E. Graham, M. M. Rapport, P. H. Shaw, W. M. Govier, O. F. Swoap, and M. J. VAN DER Brook: The pharmacology of 5-hydroxytryptamine (serotonin). J. Pharmacol. exp. Ther. 105, 80 (1952).PubMedGoogle Scholar
  540. Friedenwald, J. S., and H. Herrmann: The inactivation of amine oxidase by enzymatic oxidative products of catechol and adrenalin. J. biol. Chem. 146, 411 (1942).Google Scholar
  541. Friedhoff, A. J., and M. Goldstein: Part. I. Studies of experimental psychoses and neuro-hormones. New developments in metabolism of mescaline and related amines. Ann. N.Y. Acad. Sci. 96, 5 (1962).PubMedGoogle Scholar
  542. Friend, D. G.: The metabolism of dihydroxyphenylalanine in man before and after administration of psychotropic drugs. Ann. N.Y. Acad. Sci. 96, 152 (1962).PubMedGoogle Scholar
  543. Friend, D. G., M. S. Zileli, J. T. Hamlin, and F. J. Reuter: The effect of iproniazid on the inactivation of norepinephrine in the human. J. clin. exp. Psychopath. 19, Suppl. 1, 61 (1958).Google Scholar
  544. Frommel, Ed., C. Fleury, J. Schmidt-Ginskey et M. Béguin: De la pharmacodynamie différentielle thymoanaleptique et des substances “neuroleptiques” en expérimentation animale. Thérapie 15, 1175 (1960).PubMedGoogle Scholar
  545. Fujimoto, J. M., K. B. Pearce, and G. L. Plaa: Barbiturate metabolism as affected by certain agents acting on the liver. J. Pharmacol. exp. Ther. 129, 139 (1960).PubMedGoogle Scholar
  546. Fujimura, H., and K. Ohata: Effect of several analeptics on brain amine oxidase activity and respiration. Yakugaku Zasshi 78, 1054 (1958) [Chem. Abstr. 53, 1547d (1959).]Google Scholar
  547. Funderburk, W. H., and A. B. Drakontides: Effects of nialamide on the electroencephalogram. Fed. Proc. 19, 278 (1960).Google Scholar
  548. Funderburk, W. H., F.K. Finger, A. B. Drakontides, and J.A. Schneider: EEG and biochemical findings with MAO inhibitors. Ann. N.Y. Acad. Sci. 96, 289 (1962).PubMedGoogle Scholar
  549. Furchgott, R. F.: The pharmacology of vascular smooth muscle. Pharmacol. Rev. 7, 183, 234 (1955).Google Scholar
  550. Furchgott, R. F., P. Weinstein, H. Hübel, P. U. Bozorgmehri, and R. Mensendiek: Effect of inhibition of monoamine oxidase on response of rabbit aortic strips to sympathicomimetic amines. Fed. Proc. 14, 341 (1955).Google Scholar
  551. Furgiuele, A. R., W. J. Kinnard, and J. P. Buckley: Central effects of β-phenylisopropyl-hydrazine and iproniazid. J. Pharmacol. exp. Ther. 137, 356 (1962).PubMedGoogle Scholar
  552. Gaddum, J. H.: Bioassay procedures. Pharmacol. Rev. 11, 241 (1959).PubMedGoogle Scholar
  553. Gaddum, J. H., and N. J. Giarman: Preliminary studies on the biosynthesis. Brit. J. Pharmacol. 11, 88 (1956).PubMedGoogle Scholar
  554. Gaddum, J. H., R. W. Schayer, G. Kahlson, P. Hagen, J. L. Mongar, and C.F. Code: Histamine metabolism. Proc. int. Union physiol. Sci., Leiden, Part II, 847 (1962).Google Scholar
  555. Gaffney, T. E., W. Rousseau, S. Woronkow, and J. Peagler: Reserpine, methyl-dopa and adrenergic nerve blockade. Pharmacologist 5, 260 (1963).Google Scholar
  556. Gal, E. M., and P. A. Drewes: Studies on the metabolism of 5-hydroxytryptamine (Serotonin). I. Effect of starvation and thiamine deficiency. Proc. Soc. exp. Biol. (N.Y.) 106. 295 (1961).Google Scholar
  557. Gal, E. M., and P. A. Drewes: Studies on the metabolism of 5-hydroxytryptamine (Serotonin). II. Effect of tryptophan deficiency in rats. Proc. Soc. exp. Biol. (N.Y.) 110, 368 (1962).Google Scholar
  558. Gale, E.F.: The production of amines by bacteria. I. The decarboxylation of amino-acids by strains of bacterium coli. Biochem. J. 34, 392 (1940a).PubMedGoogle Scholar
  559. Gale, E.F.: The production of amines by bacteria. II. The production of tyramine by streptococcus faecalis. Biochem. J. 34, 846 (1940b).PubMedGoogle Scholar
  560. Gale, E.F.: The production of amines by bacteria. III. The production of putrescine from 1(+)arginine by bacterium coli in symbiosis with streptococcus faecalis. Biochem. J. 34, 853 (1940c).PubMedGoogle Scholar
  561. Gale, E.F.: Production of amines by bacteria. IV. The decarboxylation of amino-acids by organisms of the groups clostridium and proteus. Biochem. J. 35, 66 (1941).PubMedGoogle Scholar
  562. Gale, E.F.: The bacterial amino acid decarboxylases. Advanc. Enzymol. 6, 1 (1946).Google Scholar
  563. Ganrot, P.O., C. G. Gottfries, and E. Rosengren: Effects of some psychotropic drugs on the metabolism of catecholamines and 5-HT in human brain. Manuscript (1962a).Google Scholar
  564. Ganrot, P.O., A. M. Rosengren, and E. Rosengren: On the presence of different histidine decarboxy-lating enzymes in mammalian tissues. Experientia (Basel) 17, 263 (1961).Google Scholar
  565. Ganrot, P.O., and E. Rosengren: Isolation of a mitochondrial fraction containing monoamine oxidase. Med. exp. (Basel) 6, 315 (1962).Google Scholar
  566. Ganrot, P.O., and E. Rosengren., and C. G. Gottfries: Effect of iproniazid on monoamines and monoamine oxidase in human brain. Experientia (Basel) 18, 260 (1962b).Google Scholar
  567. Garattini, S., P. Fresia, A. Mortari, and V. Palma: The pressor effect of reserpine after monoamine-oxidase inhibitors. Med. exp. (Basel) 2, 252 (1960a)Google Scholar
  568. Garattini, S., A. Giachetti, L. Pieri, and R. Re: Antagonists of reserpine induced eyelid ptosis. Med. exp. (Basel) 3, 315 (1960b).Google Scholar
  569. Garattini, S., and L. Valzelli: Biochemistry and pharmacology of serotonin in the central nervous system. In: Monoamines et système nerveux central, p. 59. Genève: George & Co. S.A. 1962.Google Scholar
  570. Gardner, T. S., E. Wenis, and J. Lee: Monoamine oxidase inhibitors. I. 1-Alkyl-and 1-aralkyl-2-(picolinoy) and 5-methyl-3-isoxazolvlcarbonyl hydrazines. J. med. pharm. Chem. 2, 133 (1960).PubMedGoogle Scholar
  571. Gardner, T. S.: Monoamine oxidase inhibitors. II. Some amino and dialkylaminobenzyl hydrazines and their acyl derivatives. J. med. pharm. Chem. 3, 241 (1961).PubMedGoogle Scholar
  572. Gardner, T. S.: Monoamine oxidase inhibitors. III. Structural variations in 1-alkyl and 1-aralkyl-1(or 2)-acyl-hydrazines. J. med. pharm. Chem. 5, 503 (1962).Google Scholar
  573. Gatgounis, J., and J. Aycock: Influence of MAO inhibitors on the adrenal medullary responses to chemical stimulation. Fed. Proc. 20, 89 (1961).Google Scholar
  574. Gatgounis, J., and J. Aycock: Effects of monoamino oxidase inhibitors on adrenal medullary responses to nicotine and tetramethylammonium. J. Pharmacol. exp. Ther. 140, 50 (1963).Google Scholar
  575. Gatgounis, J., L. I. Goldberg, and W. G. Whitlock: Influence of monoamine oxidase inhibitors on the cardiovascular effects of sympathomimetic amines. Pharmacologist 1, 57 (1959).Google Scholar
  576. Gatgounis, J., J. A. Richardson, and J. A. Clayton: Effect of an MAO inhibitor on adrenal catechol-amine content to nicotine stimulation of the adrenal glands. Fed. Proc. 23, 230 (1964).Google Scholar
  577. Gaudette, L. E., and B. B. Brodie: Relationship between the lipid solubility of drugs and their oxidation by liver microsomes. Biochem. Pharmacol. 2, 89 (1959).PubMedGoogle Scholar
  578. Gaudette, L. E., and G. R. Coatney: A possible mechanism of prolonged antimalarial activity. Amer. J. trop. Med. Hyg. 10, 321 (1961).Google Scholar
  579. Gavend, M., M.-R. Gavend et J. Mercier: Action du nialamide sur la circulation coronaire. L’influence exercée par un antagoniste de la sérotonine sur l’action du nialamide et de l’iproniazide. C. R. Soc. Biol. (Paris) 154, 2089 (1960).Google Scholar
  580. Geiger, A., V. Aguilar, G. Gombos, W. Scruggs, and G. Whitney: Effect of isoniazide and iproniazide on the pathways of glucose utilization in the perfused brain. Fed. Proc. 19, 277 (1960).Google Scholar
  581. Geller, E., S. Eiduson. and A. Yuwiler: Oxidation of p-phenylenediamine and adrenaline in enzymic and copper-catalysed reactions. J. Neurochem. 5, 73 (1959).PubMedGoogle Scholar
  582. Genderen, H. Van, and H. H. M. Durville: The role of histamine and serotonin in the production of fever by bacterial pyrogens in rabbits. Acta physiol. pharmacol. neerl. 8, 116 (1959).Google Scholar
  583. Genovese, E., E. Arrigoni-Martelli e P. Fresia: Proprietà farmacologiche di un nuovo inibitore delle monoaminossidasi, la beta-fenil-isopropil-idrazina. Farmaco, Ed. sci. 14, 516 (1959).Google Scholar
  584. Georges, G., et M. Herold: Influence de la sérotonine et du Marsilid sur la réactivité de l’axe hypothalamo-hypophyso-surrénalien chez le rat. C. R. Soc. Biol. (Paris) 152, 436 (1958).Google Scholar
  585. Gershon, M. D., and L. L. Ross: Studies on the relationship of 5-hydroxytryptamine and the enterochromaffin cell to anaphylactic shock in mice. J. exp. Med. 115, 367 (1962).PubMedGoogle Scholar
  586. Gertner, S. B.: Monoamine oxidase inhibitors and ganglionic block. Fed. Proc. 18, 393 (1959a).Google Scholar
  587. Gertner, S. B.: Ganglionic block and monoamine oxidase inhibitors. Nature (Lond.) 183, 750 (1959b).Google Scholar
  588. Gertner, S. B.: The effects of monoamine oxidase inhibitors on ganglionic transmission. J. Pharmacol. exp. Ther. 131, 223 (1961).PubMedGoogle Scholar
  589. Gessa, G. L., E. Costa, R. Kuntzman, and B. B. Brodie: On the mechanism of norepine-phrine release by α-methyl-metatyrosine. Life Sci. 1962a, 353.Google Scholar
  590. Gessa, G. L., E. Costa, R. Kuntzman, and B. B. Brodie: Evidence that the loss of brain catecholamine stores due to blockade of storage does not cause sedation. Life Sci. 1962b, 441.Google Scholar
  591. Gessa, G. L., E. Cuenca, and E. Costa: A bretylium-like action of monoamine oxidase inhibitors. Pharmacologist 4, 179 (1962c).Google Scholar
  592. Gessa, G. L., E. Cuenca.: On the mechanism of hypotensive effects of MAO inhibitors. Ann. N.Y. Acad. Sci. 107, 935 (1963).PubMedGoogle Scholar
  593. Gey, K. F., W. P. Burkard u. A. Pletscher: Hemmung der Diaminoxydase „in vivo“ durch Hydrazinderivate. Helv. physiol. pharmacol. Acta 18, C 27 (1960).Google Scholar
  594. Gey, K. F., W. P. Burkard u. A. Pletscher: Influence of chlorpromazine on the decarboxylases of aromatic amino acids. Biochem. Pharmacol. 8, 383 (1961).PubMedGoogle Scholar
  595. Gey, K. F., W. P. Burkard u. A. Pletscher: Altersbedingte Veränderungen des Catecholaminstoffwechsels im Rattenherzen. Helv. physiol. pharmacol. Acta 22, C 17 (1964).Google Scholar
  596. Gey, K. F., W. P. Burkard u. A. Pletscher: Unpublished results.Google Scholar
  597. Gey, K. F., and F. Messiha: Einfluβ von Dopa-Transaminierung auf die Dopa-Decarboxy-lierung in vitro. Experientia (Basel) 20, 498 (1964).Google Scholar
  598. Gey, K. F., u. A. Pletscher: Ueber Bedeutung der Monoaminoxydase-Aktivität für die Monoamin-konzentration tierischer Gewebe. Chimia 13, 300 (1959a).Google Scholar
  599. Gey, K. F., and F. Messiha: Ueber die Herkunft verschiedener biogener Monoamine in Herz und Gehirn. Tagg. der Ges. für Physiologische Chemie, Berlin 24. 9. 1959 (b).Google Scholar
  600. Gey, K. F., and F. Messiha: Post mortem increase of 5-hydroxytryptamine in rat brain after 5-hydroxytryptophan administration. Experientia (Basel) 16, 372 (1960a).Google Scholar
  601. Gey, K. F., and F. Messiha: Vermehrung der Serum-Milchsäure durch Monoaminoxydase-Hemmer. Helv. physiol. pharmacol. Acta 18, C 70 (1960b).Google Scholar
  602. Gey, K. F., and F. Messiha: Biochemical methods for the investigation of amine metabolism in vivo. Int. Meeting on the Techniques for the Study of Psychotropic Drugs, Bologna June 1960 (c).Google Scholar
  603. Gey, K. F., and F. Messiha: Increase of pyruvic and lactic acid in rat blood by inhibitors of monoamine oxidase. Experientia (Basel) 17, 25 (1961a).Google Scholar
  604. Gey, K. F., and F. Messiha: Activity of monoamine oxidase in relation to the 5-hydroxytryptamine and nor-epinephrine content of the rat brain. J. Neurochem 6, 239 (1961b).PubMedGoogle Scholar
  605. Gey, K. F., and F. Messiha: Influence of chlorpromazine and chlorprothixene on the cerebral metabolism of 5-hydroxytryptamine, norepinephrine and dopamine. J. Pharmacol. cxp. Ther. 133, 18 (1961c).Google Scholar
  606. Gey, K. F., and F. Messiha: Effect of α-alkylated tryptamine derivatives on 5-hvdroxytryptamine metabolism in vivo. Brit, J. Pharmacol. 19, 161 (1962).Google Scholar
  607. Gey, K. F., and F. Messiha: Unpublished results.Google Scholar
  608. Gey, K. F., and F. Messiha., and W. P. Burkard: Effect of inhibitors of monoamine oxidase on various enzymes and on the storage of monoamines. Ann. N.Y. Acad. Sci. 107, 1147 (1963).PubMedGoogle Scholar
  609. Gherardi, M., e G. Salvi: Azione di alcuni inibitori enzimatici sull’ intossicazione acuta sperimentale da composti tetra-alchi-lici di piombo. Folia med. (Napoli) 44, 987 (1961). [Chem. Abstr. 56, 14880 (1962).]Google Scholar
  610. Gião, T., et J. M. Rico: Sur l’emploi des radioisotopes dans l’étude expérimentale des actions antiphlogistiques. C. R. Soc. Biol. (Paris) 154, 218 (1960).Google Scholar
  611. Giarman, N. J.: Biosynthesis of 5-hydroxytryptamine (serotonin, enteramine). Fed. Proc. 15, 428 (1956).Google Scholar
  612. Giarman, N. J.: Effects of hallucinogenic drugs in man (Discussion). Fed. Proc. 20, 897 (1961).Google Scholar
  613. Giarman, N. J., and M. Day: Presence of biogenic amines in the bovine pineal body. Biochem. Pharmacol. 1, 235 (1959).Google Scholar
  614. Giarman, N. J., and S. M. Schanberg: The intracellular distribution of 5-hydroxytryptamine (5-HT, Serotonin) in the rat’s brain. Biochem. Pharmacol. 1. 301 (1958).Google Scholar
  615. Giarman, N. J., and S. M. Schanberg: Drug-induced alterations in the intracellular distribution of 5-hydroxytryptamine in rat’s brain. Biochem. Pharmacol. 8, 6 (1961).Google Scholar
  616. Gillespie jr., L.: Clinical pharmacology of newer antihypertensive agents, monoamine oxidase and decarbocylase inhibitors, bretylium tosylate, and guanethidine. Ann. N. Y. Acad. Sci. 88, 1011 (1960).PubMedGoogle Scholar
  617. Gillespie jr., L., J. A. Oates, J. R. Crout, and A. Sjoerdsma: Further clinical evaluation of α-methyldopa. Circulation 24, 940 (1961).Google Scholar
  618. Gillespie jr., L., J. A. Oates, J. R. Crout, and A. Sjoerdsma: Clinical and chemical studies with α-methyl-dopa in patients with hypertension. Circulation 25, 281 (1962).PubMedGoogle Scholar
  619. Giordano, C.: Activity of some enzymes in experimental hypertension in the rabbit. Experientia (Basel) 17, 558 (1961).Google Scholar
  620. Giordano, C., J. Bloom, and J. P. Merrill: Preparation of monoaminoxydase. Experientia (Basel) 16, 346 (1960a).Google Scholar
  621. Giordano, C., J. Bloom, and J. P. Merrill: Effects of urea on physiologic systems. I. Studies on monoamine oxidase activity. J. Lab. clin. Med. 59, 396 (1962).PubMedGoogle Scholar
  622. Giordano, C., A. H. Samia, J. Bloom, F. W. Haynes, and J. P. Merrill: Studies on experimental renal hypertension in rabbits. Fed. Proc. 19, 100 (1960b).Google Scholar
  623. Girard, J.-P.: Le rôle de l’adénosine triphosphorique (ATP) dans la fixation intraplaquettaire de la sérotonine. Schweiz. med. Wschr. 93, 1456 (1963).PubMedGoogle Scholar
  624. Gitlow, S., M. Mendlowitz, and N. Naftchi: Effect of iproniazid on digital vascular norepinephrine sensitivity. The first Hahnemann Symposium on Hypertensive Disease, p. 409.Philadelphia and London: W. B. Saunders Co. 1959.Google Scholar
  625. Glenner, G. G., H. J. Burtner, and G. W. Brown: The histochemical demonstration of monoamine oxidase activity by tetrazolium salts. J. Histochem. Cytochem 5, 591 (1957).PubMedGoogle Scholar
  626. Gluckman. M. I.: Cerebral free and bound serotonin (5-HT) after iproniazid (IH) and reser-pine (R). Fed. Proc. 19, 265 (1960).Google Scholar
  627. Gluckman. M. I. A. Daniels, and A. S. Marrazzi: Intracellular distribution and iproniazid inhibition of monoamine oxidase in rat brain and liver. J. Pharmacol. exp. Ther. 122, 25A (1958).Google Scholar
  628. Gluckman, M. I., E. R. Habt, and A. S. Marrazzi: Cerebral synaptic inhibition by serotonin and iproniazid. Science 126, 448 (1957).PubMedGoogle Scholar
  629. Gluckman, M. I., and Z. Horovitz: Limiting factors in monoamine oxidase (MAO) inhibition. Pharmacologist 1, 81 (1959).Google Scholar
  630. Gluckman, M. I., and A. S. Marrazzi: Reversal of iproniazid inhibition of monoamine oxidase. Fed. Proc. 17, 371 (1958).Google Scholar
  631. Güing, H.: Beeinflussung der Fieber erzeugenden Wirkung bakterieller Pyrogene durch Iproniazid, Reserpin und Dibenamin. Arzneimittel-Forsch. 9, 793 (1959).Google Scholar
  632. Güing, H.: Die Wirkungsweise von pvrogenen und bakteriellen Endotoxinen. Klin. Wschr. 38, 1069 (1960).Google Scholar
  633. Göschke, H.: Spezies-Unterschiede bei der Wirkung von Monoaminoxydase-Hemmern. Arch. int. Pharmacodyn. 133, 245 (1961).Google Scholar
  634. Göschke, H., W. P. Burkard, K. F. Gey u. A. Pletscher: Hemmung der Cholinoxydase in vivo durch Neuropbarmaca Med. Exp. 8, 256 (1963).Google Scholar
  635. Gogerty, J. H., and A. Horita: A comparison of the in vivo monoamine oxidase inhibitory properties of iproniazid and beta-phenylisopropyl-hydrazine. Fed. Proc. 18, 395 (1959).Google Scholar
  636. Gogerty, J. H., and A. Horita: A comparison of the in vivo inhibition of brain and liver monoamine oxidase as produced by beta-phenylisopropylhydrazine (PIH) and iproniazid. J. Pharmacol. exp. Ther. 129, 357 (1960).PubMedGoogle Scholar
  637. Goldberg, L. I.: Iproniazid and other MAO inhibitors. Ann. N. Y. Acad. Sci. 80, 639 (1959).Google Scholar
  638. Goldberg, L. I., and F. M. Dacosta: Selective block of sympathetic transmission by iproniazid and harmine in the intact animal. Pharmacologist 2, 95 (1960a).Google Scholar
  639. Goldberg, L. I., and F. M. Dacosta: Selective depression of sympathetic transmission by intravenous administration of iproniazid and harmine. Proc. Soc. exp. Biol. (N. Y.) 105, 223 (1960b).Google Scholar
  640. Goldberg, L. I., and M. Ozaki: Actions of the decarboxylase inhibitor, α-methyl-3,4-dihydroxyphenyl-alanine, in the dog. Nature (Lond.) 188, 502 (1960).Google Scholar
  641. Goldberg, L. I., D. Horwitz, and A. Sjoerdsma: Attenuation of cardiovascular responses to exercise as a possible basis for effectiveness of monoamine oxidase inhibitors in angina pectoris. J. Pharmacol. exp. Ther. 137, 39 (1962).PubMedGoogle Scholar
  642. Goldberg, L. I., and A. Sjoerdsma: Effects of several monoamine oxidase inhibitors on the cardiovascular actions of naturally occurring amines in the dog. J. Pharmacol. exp. Ther. 127, 212 (1959).PubMedGoogle Scholar
  643. Goldberg N. D., and F. E. Shideman: A species difference in the depletion of myocardial catecholamines by a monoamine oxidase inhibitor. Fed. Proc. 20, 128 (1961).Google Scholar
  644. Goldberg N. D., and F. E. Shideman: Species differences in the cardiac effects of a monoamine oxidase inhibitor. J. Pharmacol exp. Ther. 136, 142 (1962).PubMedGoogle Scholar
  645. Goldin, A., D. Dennis, J. M. Venditti, and S. R. Humphreys: Potentiation of pentobarbital anesthesia by isonicotinic acid hydrazide and related compounds. Science 121, 364 (1955).PubMedGoogle Scholar
  646. Goldstein, M., and J. F. Contrera: The substrate specificity of phenylamine-β-hydroxylase. J. biol. Chem. 237, 1898 (1962).PubMedGoogle Scholar
  647. Goldstein, M., A. J. Friedhoff, S. Pomerantz, and S. B. Gertner: The distribution and metabolism of simultaneously infused norepinephrine-7-H3 and epinephrine-1-C14. Fed. Proc. 19 295, (1960a).Google Scholar
  648. Goldstein, M., A. J. Friedhoff, S. Pomerantz, and C. Simmons: The characterization of a new metabolite of dopamine. Biochim. biophys. Acta (Amst.) 39, 189 (1960b).Google Scholar
  649. Goldstein, M., A. J. Friedhoff. and G. Sandler: The relative metabolic rates of norepinephrine-7-H3 and epinephrine-1-C14. Experientia (Basel) 16, 211 (1960c).Google Scholar
  650. Goldstein, M., A. J. Friedhoff., and C. Simmons: Metabolic pathways of 3-hydroxytyramine. Biochim biophys. Acta (Amst.) 33, 572 (1959).Google Scholar
  651. Goldstein, M., A. J. Friedhoff., and N. N. Prochoroff: Indirect evidence of synthesis of norepinephrine from 3-hydroxytyramine-l-C14 in vivo. Proc. Soc. exp. Biol. (N.Y.) 103, 137 (1960d).Google Scholar
  652. Goldstein, M., A. J. Friedhoff., S. B. Wortis, and S. B. Gertner: The differences in the accumulation and metabolism of catecholamines in heart and liver. Experientia (Basel) 16, 369 (1960e).Google Scholar
  653. Goldstein, M., and S. B. Gertner: Formation of a new metabolite of epinephrine and norepinephrine in liver and kidney. Nature (Lond.) 187, 147 (1960).Google Scholar
  654. Goldstein, M., and J. M. Musacchio: The formation in vivo of N-acetyl-dopamine and N-acetyl-3-methoxydopamine. Biochim. biophys. Acta (Amst.) 58, 607 (1962).Google Scholar
  655. Goldstein, M., and J. M. Musacchio: Effects of monoamine oxidase inhibition on biogenic amine metabolism. Ann. N.Y. Acad. Sci. 107, 840 (1963).PubMedGoogle Scholar
  656. Gonnard, P.: Oxydation et activité dopadécarboxylasique. Bull. Soc. Chim. biol. (Paris) 31, 194 (1949).Google Scholar
  657. Gonnard, P.: Action d’aminés cycliques et acycliques sur la dopadécarboxylation. Bull. Soc. Chim. biol. (Paris) 32, 535 (1950).Google Scholar
  658. Gonnard, P.: Action de quelques composés minéraux et organiques sur la dopadécarboxy-lation. Bull. Soc. Chim, biol. (Paris) 33, 14 (1951).Google Scholar
  659. Gonnard, P.: L’isonicotylhydrazone de phosphopyridoxal, rôle co-enzvmatique. C. R. Acad. Sci. (Paris) 246, 3539 (1958).Google Scholar
  660. Gonnard, P.: Effect of hydrazides and hydrazones of pyridoxal-5-phosphate on the cerebral glutamic decarboxylase and pyridoxal phosphokinase. Abstr. Int. Neurocbem. Symp. on “Enzymic activity of the CNS”, p. 28. Göteborg (Sweden) June 17–21, 1962.Google Scholar
  661. Gonnard, P., et N. Boigné: Rôle co-enzymatique d’hydrazones de phospho-5-pyridoxal cynuréninase et hydrazides cycliques. Bull. Soc. Chim. biol. (Paris) 43, 609 (1961).Google Scholar
  662. Gonnard, P., M. Camier et H. Boigné: Etude chromatographique du phosphate de pyridoxal, de l’isoniazide et de l’isonicotyl hydrazone de phospho-5′-pvridoxal. Bull. Soc. chim. Biol. (Paris) 46, 407 (1964b).Google Scholar
  663. Gonnard, P., M. Camier et C. Nguyen-Philippn: Etude sur la stabilité de l’isonicotyl hydrazone de phospho-5′-pyridoxal en présence de pyridaxoloenzymes. Bull. Soc. chim. Biol. 46, 323 (1964a).PubMedGoogle Scholar
  664. Gonnard, P., et S. Fexard: Décarboxylase glutaminique et Iwdrazones de phospho-5-pyridoxal. J. Neurochem. 9, 135 (1962).PubMedGoogle Scholar
  665. Gonnard, P., et J. P. Nguyen Chi: Action de l’hydrazide et des composés de structure voisine sur la dopadécarboxylase. Bull. Soc. Chim. biol. (Paris) 40, 16 (1958a).Google Scholar
  666. Gonnard, P., et J. P. Nguyen Chi: Action de l’hvdrazide isonicotinique et de composés de structure voisine sur la dopadécarboxylase. Bull. Soc. Chim. biol. (Paris) 40, 485 (1958b).Google Scholar
  667. Gonnard, P., et J. P. Nguyen Chi: Rôle co-enzymatique d’hydrazones de phosphopyridoxal vis-à-vis de la dopadécarboxylase. Bull. Soc. Chim. biol. (Paris) 41, 1455 (1959a).Google Scholar
  668. Gonnard, P., et J. P. Nguyen Chi: Activation de la dopadécarboxylase par l’isonicotinyl hydrazone de phospho-pyridoxal. Enzymologia 20, 237 (1959b).PubMedGoogle Scholar
  669. Gonnard, P., A. Pelou et C. N. Philippon: Action de la carbutamide (BZ55) sur l’adrénalinogénèse. IV. Int. Congr. Bioehem., Vienna 1958, Suppl. Int. Abstr. biol. Sci. 10, 185 (1958).Google Scholar
  670. Gonnard, P., A. Pelou et C. N. Philippon: Action de la carbutamide (BZ 55) sur l’adrénalinogénèse. Bull. Soc. Chim. biol. (Paris) 41, 127 (1959).Google Scholar
  671. Goodall, M., and N. Kirshner: Biosvnthesis of adrenaline and noradrenaline in vitro. J. biol. Chem. 226, 213 (1957).PubMedGoogle Scholar
  672. Sgorkin, V. Z.: Some properties of mitochondrial monoamino oxidase of rat liver and brain. Biokhimija 24. 758 (1959) [Engl. Ed.].Google Scholar
  673. Sgorkin, V. Z.: Partial separation of rat liver mitochondrial amine oxidases. Nature (Lond.) 200, 77 (1963).Google Scholar
  674. Sgorkin, V. Z.: On the multiplicity of mitochondrial amine oxidases. In: Proc. 6th. Int. Congr. Biochem., p. 309, IV-58. New York 1964.Google Scholar
  675. Sgorkin, V. Z.: Personal communication.Google Scholar
  676. Sgorkin, V. Z., L. I. Gridneya, L. A. Romanova, and I. S. Severina: Spectrophotometric determination of monoamine oxidase activity in mitochondria. Biochimija (Mosc.) (Engl. Ed.) 27, 852 (1963).Google Scholar
  677. Sgorkin, V. Z., N. A. Kitrossky, L. B. Klyashtorin, N. V. Komisarova, G. A. Leontyeva, and V. A. Poochkov. Biochimija (Mosc.) in press (1964a).Google Scholar
  678. Sgorkin, V. Z., N. V. Komisarova, M. I. Lerman, and I. V. Veryovkina: The inhibition of mitochondrial amine oxidases in vitro by proflavine. Biochem. biophvs. Res. Commun. 15, 383 (1964b).Google Scholar
  679. Gottfries, C. G.: Versuche mit Marsilid und Marsilid-Analogen. Psychiat. et Neurol. (Basel) 140, 115 (1960).Google Scholar
  680. Govier, W. M., M. E. Grelis, N. S. Yanz, and K. H. Beyer: Studies on the mechanism of action of sympathomimetic amines. J. Pharmacol. exp. Ther. 87, 149 (1946).PubMedGoogle Scholar
  681. Govier, W. M., B. G. Howes, and A. J. Gibbons: The oxidative deamination of serotonin and other 3-(beta-aminoethyl)-indoles by monoamine oxidase and the effect of these compounds on the deamination of tyramine. Science 118, 596 (1953).PubMedGoogle Scholar
  682. Grana, E., and L. Lilla: The inhibition of amine oxidase and the central stimulating action of the steroisomeric amphetamines and 1-phenyl-ethylamines. Brit. J. Pharmacol. 14, 501 (1959).PubMedGoogle Scholar
  683. Granowitz, E., u. A. Pletscher: Die diagnostische Bedeutung der 5-Hydroxyindolessig-säure-Ausscheiduns im Urin. Helv. med. Acta 24, 21 (1957).PubMedGoogle Scholar
  684. Green, A. L.: The inhibition of monoamine oxidase by arylalkvlhydrazine. Biochem. J. 84, 217 (1962).PubMedGoogle Scholar
  685. Green, A. L.: Studies on the mechanism of inhibition of monoamine oxidase by hydrazine derivatives. Biochem. Pharmacol. 13, 249 (1964).PubMedGoogle Scholar
  686. Green, A. L., and T. M. Haughton: The estimation of monoamine oxidase. Biochem. J. 76, 44P (1960).Google Scholar
  687. Green, A. L., and T. M. Haughton: A colorimetric method for the estimation of monoamine oxidase. Biochem. J. 78, 172 (1961).PubMedGoogle Scholar
  688. Green, H., and R. W. Erickson: Effect of trans-2-phenylcyclopropylamine upon norepi-nephrine concentration and monoamine oxidase activity of rat brain. J. Pharmacol. exp. Ther. 129, 237 (1960).PubMedGoogle Scholar
  689. Green, H., and R. W. Erickson: Further studies with tranylcypromine (monoamine oxidase inhibitor) and its interaction with reserpine in rat brain. Arch. int Pharmacodyn. 135, 407 (1962).PubMedGoogle Scholar
  690. Green, H., and R. W. Erickson., and J. L. Sawyer: Biochemical correlates of pharmacologic activity. Pharmacologist 3, 61 (1961).Google Scholar
  691. Green, H., and J. L. Sawyer: Intracellular distribution of norepinephrine in rat brain. I. Effect of reserpine and the monoamine oxidase inhibitors, trans-2-phenylcyclopropylamine and l-isonicotinyl-2-isopropylhydrazine. J. Pharmacol. exp. Ther. 129, 243 (1960 a).PubMedGoogle Scholar
  692. Green, H., and J. L. Sawyer.: Correlation of tryptamine-induced convulsions in rats with brain tryptamine concentration. Proc. Soc. exp. Biol. (N. Y.) 104, 153 (1960b).Google Scholar
  693. Green, H., and J. L. Sawyer., and R. Erickson: Intracellular distribution of noradrenaline in rat brain. Pharmacologist 1, 75 (1959).Google Scholar
  694. Green, H., and J. L. Sawyer., and L. Cook: Effect of repeated oral administration of monoamine oxidase inhibitors on rat brain amines. Proc. Soc. exp. Biol. (N. Y.) 109, 347 (1962).Google Scholar
  695. Green, J. P.: Binding of some biogenic amines in tissues. Advanc. Pharmacol. 1, 349 (1962).Google Scholar
  696. Green, J. P., and A. V. Furano: TWO pools for amines in neuroplastic mast cells. Biochem. Pharmacol. 11, 1049 (1962).PubMedGoogle Scholar
  697. Greenblatt, E. N., and A. C. Osterberg: Effect of drugs on maintenance of exploratory behavior in mice. Fed. Proc. 20, 397 (1961a).Google Scholar
  698. Greenblatt, E. N., and A. C. Osterberg: Correlations of activating and lethal effects of excitatorv drugs in grouped and isolated mice. J. Pharmacol. exp. Ther. 131, 115 (1961b).PubMedGoogle Scholar
  699. Greenblatt, I. J. and A. Kahn: Clinical toxicity studies of a monoamine oxidase inhibitor. Ann. N. Y. Acad. Sci. 80, 947 (1959).PubMedGoogle Scholar
  700. Greig, M. E., and A. J. Gibbons: The effect of DL-α-ethyltryptamine acetate on serotonin metabolism. Arch. int. Pharmacodyn. 136, 147 (1962).PubMedGoogle Scholar
  701. Greig, M. E., J. P. Da Vanzo, and O. K. Sebek: Comparative effects of α-ethyltryptamine isomers on certain systems in vitro and in vivo. Biochem. Pharmacol. 8, 32 (1961a).Google Scholar
  702. Greig, M. E., P. H. Seay, and Freyburger: The pharmacology of etryptamine. J. Neuropsychiat. 2, 131 (1961b).PubMedGoogle Scholar
  703. Greig, M. E., R. A. Walk, and A. J. Gibbons: The effect of three tryptamine derivatives on serotonin metabolism in vitro and in vivo. J. Pharmacol. exp. Ther. 127, 110 (1959).PubMedGoogle Scholar
  704. Griesemer, E. C., J. Barsky, C. A. Dragstedt, J. A. Wells, and E. A. Zeller: Potentiating effect of iproniazid on the pharmacological action of sympathomimetic amines. Proc. Soc. exp. Biol. (N. Y.) 84, 699 (1953).Google Scholar
  705. Griesemer, E. C., C. A. Dragstedt, J. A. Wells, and E. A. Zeller: Adrenergic blockade by iproniazid. Experientia (Basel) 11, 182 (1955).Google Scholar
  706. Griesemer, E. C., R. M. Fleming, W. J. Hartmann, and W. G. Clark: Competitive inhibition of dihydroxy-phenylalanine (DOPA) decarboxylase in vitro. Pharmacologist 3, 77 (1961).Google Scholar
  707. Griesemer, E. C., R. M. Fleming, W. J. Hartmann, and J. A. Wells: Abolition of epinephrine inactivating properties of liver by inhibitors of monoamine oxidase. J. Pharmacol. exp. Ther. 116, 282 (1956).PubMedGoogle Scholar
  708. Grinsteins, V., and G. Villere: Effect of some derivatives of dibenzofuran and carboxylic acid hydrazides on enzymes system. Zinatniskie Raksti, Latv. Univ. 9, 143 (1956). [Chem. Abstr. 52, 10248a (1958).]Google Scholar
  709. Gross, J., C. I. Levene, and S. Orloff: Fragility and extractable collagen in the lathyritic chick embryo. An assay for lathyrogenic agents. Proc. Soc. exp. Biol. (N. Y.) 105, 148 (1960).Google Scholar
  710. Groves, W. G., and H. J. Jenkins: Investigation of the cardiovascular response of the dog to l-phenyl-2-hydrozinopropane. J. pharm. Sci. 50, 502 (1961).PubMedGoogle Scholar
  711. Grunberg, E.: Studies on the activity of hydrazine derivatives of isonicotinic acid in the experimental tuberculosis of mice. Quart. Bull. Sea View Hosp. 13, 3 (1952).Google Scholar
  712. Guggenheim, M., u. W. Löffler: Das Schicksal proteinogener Amine im Tieikörper. Biochem. Z. 72, 325 (1916).Google Scholar
  713. Gum, O. B., C. J. Smyth, P. K. Hamilton Jr., and C. Moens: Effect of intraarticular serotonin and other amines on connective tissue proliferation of rabbit joints. Arthr. and Rheum. 3, 447 (1960).Google Scholar
  714. Gupta, G. P., and B. N. Dhawan: Blockade of reserpine emesis in pigeons. Arch. int. Pharmacodyn. 128, 481 (1960).PubMedGoogle Scholar
  715. Gutmann, N., S. Felton, and F. M. Huennekens: Effect of isonicotinic hydrazides on enzymes systems. Biochim. biophys. Acta (Amst.) 14, 282 (1954).Google Scholar
  716. Gylys, J. A., M. Chessin, and M. R. Warren: Effects of beta-phenylethylhydrazine and related compounds on response of rabbit aortic strips to sympathomimetic amines. Pharmacologist 1, 82 (1959).Google Scholar
  717. Gylys, J. A., M. Chessin, and P. M. R. Muccia: Effect of modaline HC1 (W 3207 A) on locomotor activity in the mouse. Fed. Proc. 23, 198 (1964).Google Scholar
  718. Gylys, J. A., P. M. R. Muccia, and M. K. Taylor: Pharmacological and toxicological properties of 2-methyl-3-piperidinopyrazine, a new antidepressant. Ann. N.Y. Acad. Sci. 107, 899 (1963).PubMedGoogle Scholar
  719. Gylys, J. A., P. M. R. Muccia, and M. W. Osborne: Antagonism between a pyrazine derivative, W3207 A, and reserpine as compared to phenelzine and imipramine. Pharmacologist 4, 117 (1962).Google Scholar
  720. Haas, H., u. W. Appel: Vergleichende Untersuchungen mit 6-methyl-2-heptylhydrazin und anderen Monoaminoxydase-Hemmern. Arzneimittel-Forsch. 12, 352 (1962).Google Scholar
  721. Haavaldsen, R.: Transamination of aromatic amino-acids in nervous tissue. Nature (Lond.) 196, 577 (1962).Google Scholar
  722. Hagen, P.: The substrate specificity of aminé oxidase of mouse mastocvtoma. Fed. Proc. 18, 399 (1959).Google Scholar
  723. Hagen, P.: Observations on the substrate specificity of dopa decarboxylase from ox adrenal medulla, human phaeochromocytoma and human argentaffinoma. Brit. J. Pharmacol. 18, 175 (1962).PubMedGoogle Scholar
  724. Hagen, P., and F. L. Lee: Amino acid decarboxvlases of mouse mast cells. J. Physiol. (Lond.) 143, 7 (1958).Google Scholar
  725. Hagen, P., and N. Weiner: Enzymic oxidation of pharmacologically active amines. Fed. Proc. 18, 457, 1005 (1959).Google Scholar
  726. Hagen, P., S. Ono, and F.-L. Lee: Amino acid decarboxylascs of mouse mastocytoma tissue. J. Pharmacol. exp. Ther. 130, 9 (1960).PubMedGoogle Scholar
  727. Hagen, P., and A. D. Welch: The adrenal medulla and the biosynthesis of pressor amines. Recent Progr. Hormone Res. 12, 27 (1956).PubMedGoogle Scholar
  728. Halpern, B. N., C. Drudi-Baracco: Suppression by iproniazide of the antagonistic action of reserpine on amphetamine “group toxicity”. Biochem. Pharmacol. 8, 9 (1961).Google Scholar
  729. Halpern, B. N., et D. Bessirard: Toxicité de groupe par l’amphétamine et action de la réserpine, de la chlorpromazine et des inhibiteurs de la monoamineoxydase. C. R. Soc. Biol. (Paris) 156, 769 (1962a).Google Scholar
  730. Halpern, B. N., Toxicité de groupe par l’amphétamine et action de la réserpine, de la chlorpromazine et des inhibiteurs de la monoamineoxydase. Presse méd. 70, 1365 (1962b).Google Scholar
  731. Halpern, B. N., J. C. Morard et C. Drudi-Baracco: Action protectrice de la réserpine sur les lésions de dégénérescence myocardique aiguë provoquées par la DL-amphétamine et suppression de cette action par les inhibiteurs de la monoamineoxydase. C. R. Soc. Biol. (Paris) 156, 773 (1962c).Google Scholar
  732. Halpern, B. N., J. C. Morard et C. Drudi-Baracco: Action protectrice de la réserpine sur les lésions de dégénérescence myocardique aiguë provoquées par la DL-amphétamine et suppression de cette action par les inhibiteurs de la monoamine-oxydase. Presse méd. 70, 1365 (1962d).Google Scholar
  733. Hanke, M. T., and K. K. Koessler: Studies on proteinogenous amines. XII. The production of histamine and other imidazoles from histidine by the action of microorganisms. J. biol. Chem. 50, 131 (1922).Google Scholar
  734. Hanke, M. T., and K. K. Koessler: Studies on proteinogenous amines. VII. On the faculty of normal intestinal bacteria to form toxic amines. J. biol. Chem. 59, 835 (1924a).Google Scholar
  735. Hanke, M. T., and K. K. Koessler: Studies on proteinogenous amines. VIII. On the production of histamine, tyramine and phenol in common laboratory media by certain intestinal microorganisms. J. biol. Chem. 59, 855 (1924b).Google Scholar
  736. Hanke, M. T., and K. K. Koessler: Studies on proteinogenous amines. XIX. On the factors involved in the production of phenol by the colon group. J. biol. Chem. 59, 867 (1924c).Google Scholar
  737. Håkanson, R.: Histidine decarboxylase in the fetal rat. Biochem. Pharmacol. 12, 1289 (1963).Google Scholar
  738. Håkanson, R., and H. Möller: Dopa decarboxylase activity in the skin. Acta derm.-venereol. (Stockh.) 43, 485 (1963).Google Scholar
  739. Hanson, K. M., D. C. Austin, and M. H. Aprison: In vitro effect of nonindole compounds on oxidative activity of ceruloplasmin. J. appl. Physiol. 14, 363 (1959).PubMedGoogle Scholar
  740. Hansson, E., and W. G. Clark: A rapid method for screening dopa decarboxylase inhibitors in vivo. Pharmacologist 4, 149 (1962a).Google Scholar
  741. Hansson, E., Studies on dopa decarboxylase inhibitors in vivo by use of C14O2 carboxyl labelled dopa. Proc. Soc. exp. Biol. (N. Y.) 111, 793 (1962b).Google Scholar
  742. Hansson, E., R. M. Fleming, and W. G. Clark: Effect of some benzylhydrazines and benzyloxyamines on dopa and 5-hvdroxytryptophan decarboxylase in vivo. Int. J. Neuropharmacol. 3, 177 (1964).PubMedGoogle Scholar
  743. Hardegg, W.: Zur Messung der Monoaminoxydase-Aktivität. Pflügers Arch. ges. Physiol. 274, 25 (1961).Google Scholar
  744. Hansson, E., u. E. Heilbronn: Oxydation von Serotonin und Tyramin durch Rattenlebermitochon-drien. Biochim. biophys. Acta (Amst.) 51, 553 (1961).Google Scholar
  745. Hare, M. L. C.: CXXI. Tyramine oxidase. I. A new enzyme system in liver. Biochem. J. 22, 968 (1928).PubMedGoogle Scholar
  746. Harris, E. S.: Studies on rat liver monoamine oxidase. Fed. Proc. 19, 25 (1960).Google Scholar
  747. Harris, S. C., L. M. Searle, and A. C. Ivy: The excretion of amphetamine. J. Pharmacol. exp. Ther. 89, 92 (1947).PubMedGoogle Scholar
  748. Harrison, D. C., C. A. Chidsey, and E. Braunwald: The release of norepinephrine from the heart by vasoactive amines. Clin. Res. Proc. 9, 328 (1961).Google Scholar
  749. Harrison, D. C., C. A. Chidsey, and E. Braunwald: Studies on the mechanism of action of metaraminol (Aramine). Ann. intern. Med. 59, 297 (1963).PubMedGoogle Scholar
  750. Hartmann, W. J.: Unpublished cit.Google Scholar
  751. Hartmann, W. J.D., T. Masuoka, H. F. Schott, and L. Petriello: Formation of catecholamines by various areas of cat brain. J. Pharmacol. exp. Ther. 139, 73 (1963).Google Scholar
  752. Hartmann, W. J., R. W. Akawie and W. G. Clark: Competitive inhibiton of 3,4-dihydroxyphenylalanine (dopa) decarboxylase in vitro. J. biol. Chem. 216, 507 (1955a).Google Scholar
  753. Hartmann, W. J., and W. G. Clark: Competitive inhibition of dihydroxy phenylalanine (dopa) decarboxylase. Fed. Proc. 12, 62 (1953).Google Scholar
  754. Hartmann, W. J., S.D. Cyr, A. L. Jordan, and R. A. Leibhold: Pharmacologically active amines and their biogenesis in the octopus. Ann. N. Y. Acad. Sci. 90, 637 (1960).Google Scholar
  755. Hartmann, W. J., R. S. Pogrund, W. Drell, and W. G. Clark: Studies on the biosynthesis of arterenol. Enzymatic decarboxylation of diastereoisomers of hydroxyphenylserines. J. Amer. chem. Soc. 77, 816 (1955b).Google Scholar
  756. Harwood, C. T. and Wm. M. Bigelow: Endocrine effects of psychic energizers and CNS stimulants. Pharmacologist 2, 93 (1960).Google Scholar
  757. Hauschild, F.: Orale Wirksamkeit, Abbau und chemische Konstitution in der Ephedrin-Adrenalin-Reihe. Klin. Wschr. 20, 363 (1941).Google Scholar
  758. Haverback, B. J., and M. Brody: Results reported at the Marsilid Symposium, San Francisco 1958.Google Scholar
  759. Hawkins, J.: The localization of amine oxidase in the liver cell. Biochem. J. 50, 577 (1952a).PubMedGoogle Scholar
  760. Hawkins, J.: Amine oxidase activity of rat liver in riboflavin deficiency. Biochem. J. 51, 399 (1952b).PubMedGoogle Scholar
  761. Hawkins, J., and J. M. Walker: The effect of colchicine on L-dopa decarboxylase and on the pressor amine content of rat adrenals. J. Physiol. (Lond). 115, 38 P (1951).Google Scholar
  762. Hawkins, J., and J. M. Walker: The effect of colchicine on the enzyme content of regenerating rat liver and on the pressor amine content of the adrenal. Brit. J. Pharmacol. 7, 152 (1952).PubMedGoogle Scholar
  763. Hazard, R., M. Beauvallet, J. Hazard, P. Mouillé et M. Solier: Effets des sensibilisateurs de l’adrénaline sur la teneur en hormone du plasma au cours de perfusions intraveineuses continues. C. R. Soc. Biol. (Paris) 154, 1366 (1960).Google Scholar
  764. Hazard, R., M. Beauvallet, J. Hazard, E. C. Savini et S. Larno: Variations dans la teneur en adrénaline du liquide ayant perfusé l’oreille isolée de lapin. I. Etude de l’action des adrénalino-sensibilisateurs. Biochem. Pharmacol. 8, 66 (1961).Google Scholar
  765. Heegard, E. V., and G. A. Alles: Inhibitor specificity of amine oxidase. J. biol. Chem. 147, 505 (1943).Google Scholar
  766. Hegglin, R., E. Lüthy, U. Isler u. G. Forster: Stoffwechseluntersuchungen bei mit Tersavid behandelten Angina-pectoris-Kranken. Cardiologia (Basel) 37, Suppl. II, 230 (1960).Google Scholar
  767. Heilbronn, E.: Effect of certain hydrazines and amines on monoamine oxidase and some pyridoxal phosphate-requiring enzymes. Biochem. J. 76, 45 P (1960).Google Scholar
  768. Heim, F.: Die Bedeutung der experimentellen Änderung der Aminooxydase-Aktivität für die Adrenalinwirkung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 204, 520 (1947).Google Scholar
  769. Heim, F.: Über den Einfluss verschiedener Ester auf die fermentative Oxydation von Adrenalin und Adrenalinderivaten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 209, 181 (1950a).Google Scholar
  770. Heim, F.: Über den Einfluss von Alkohol auf den enzymatischen Abbau des Tyramins. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 210, 16 (1950b).Google Scholar
  771. Heim, F., u. K. Diemer: Über quantitative Wirkungsunterschiede zwischen l-Isonicotinoyl-2-isopropylhydrazin (Iproniazid) und Isopropylhydrazin auf die Monoaminoxydase. Med. exp. (Basel) 3, 249 (1960).Google Scholar
  772. Helmstra, N. W.: Social influence on the response to drugs. II. Chlorpromazine and iproniazid. Psychopharmacol. 3, 72 (1962).Google Scholar
  773. Heise, G. A., and E. Boit: Behavioral determination of time and dose parameters of monoamine oxidase inhibitors. J. Pharmacol. exp. Ther. 129, 155 (1960).PubMedGoogle Scholar
  774. Hempel, K., u. M. Deimel: Einfluβ des Dopa-Decarboxylase-Hemmers α-Methyl-Dopa auf die Umwandlung von Dopa in Melanin und Brenzcatechinamine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 246, 203 (1963).Google Scholar
  775. Hermann, M., et R. Mornex: Etude expérimentale des effets cardiovasculaires de l’ipronia-zide. Thérapie 15, 993 (1960).PubMedGoogle Scholar
  776. Herold, M., et J. Cahn: Premier essai d’interprétation du mécanisme d’action des inhibiteurs de la monoamine-oxydase. Rev. Agréssologie 2, 679 (1961).Google Scholar
  777. Hérold, M., J. Cahn, C. Helbecque et O. Kabacoff: Action de quelques inhibiteurs de la L-dopa décarboxylase à l’égard de différents types de convulsions. C. R. Soc. Biol. (Paris) 156, 1273 (1962a).Google Scholar
  778. Hérold, M., J. Cahn, T. Lasjaunias et A.-M. Juillard: Action de quelques inhibiteurs de la L-dopa décarboxylase sur la durée de la narcose barbiturique chez la souris. C. R. Soc. Biol. (Paris) 156, 1270 (1962b).Google Scholar
  779. Hérold, M., G. Georges et C. Cahn: Quelques aspects de l’action de l’iproniazide sur le système nerveux central. In: Neuro-Psychopharmacology, vol. 1, p. 324, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1959.Google Scholar
  780. Hérold, M., O. Kabacoff, O. Mathias, G. Mathias et J. Cahn: Variations du temps de survie du coeur chez la souris prétraitée par les inhibiteurs de la monoamineoxydase. C.R. Soc. Biol. (Paris) 155, 2111 (1961).Google Scholar
  781. Hertting, G.: Über den Einfluss des Serotonin Stoffwechsels auf die Metrazolkrampf-schwelle bei Mäusen. Wien. klin. Wschr. 70, 190 (1958).PubMedGoogle Scholar
  782. Hertting, G., and J. Axelrod: Fate of tritiated noradrenaline at the sympathetic nerve-endings. Nature (Lond.) 192, 172 (1961).Google Scholar
  783. Hertting, G., and L. G. Whitby: Effect of drugs on the uptake and metabolism of H3-norepine-phrine. J. Pharmacol. exp. Thei. 134, 146 (1961a).Google Scholar
  784. Hertting, G., and R. W. Patrick: Effect of drugs on the uptake of circulating H3-norepinephrine by tissues. Fed. Proc. 20, 167 (1961b).Google Scholar
  785. Hertting, G., I. J. Kopin, and E. Gordon: The uptake, release and metabolism of norepinephrine-7-H3 in the isolated perfused rat heart. Fed. Proc. 21, 331 (1962).Google Scholar
  786. Hertting, G., and E. H. Labrosse: Biliary and urinary excretion of metabolites of 7 H-epinephrine in the rat. J. biol. Chem. 237, 2291 (1962).PubMedGoogle Scholar
  787. Hess, S. M.: The releasing action of α-methyl-3-hydroxyphenylalanine (a-methyl-meta-tyrosine). Pharmacologist 3, 77 (1961).Google Scholar
  788. Hess, S. M.: The releasing action of α-methyl-3-hydroxyphenvlalanine (a-methyl-meta-tyrosine). Arch. int. Pharmacodyn. 138, 584 (1962).PubMedGoogle Scholar
  789. Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: The effects of α-methyl-dopa and α-methyl-meta-tyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol. exp. Ther. 134, 129 (1961a).PubMedGoogle Scholar
  790. Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: Effect of α-methylamino acids on catecholamines and serotonin. Fed. Proc. 20, 344 (1961b).Google Scholar
  791. Hess, S. M., R. H. Connamacher, M. Ozaki, and W. Doepfner: Behavioral effects and brain amine content in rats. Arch. int. Pharmacodyn. 134, 89 (1961).PubMedGoogle Scholar
  792. Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: Lack of correlation between excitement and brain amine content after monoamine oxidase inhibitors and amine precursors in rats. Pharmacologist 1, 83 (1959a).Google Scholar
  793. Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: The effects of α-methyl-dopa and α-methyl-meta-tyrosine on the metabolism of serotonin and norepinephrine. Pharmacologist 2, 81 (1960).Google Scholar
  794. Hess, S. M., B. G. Redfield, and S. Udenfriend: Tryptamine in animal tissues following administration of iproniazid. Fed. Proc. 18, 402 (1959b).Google Scholar
  795. Hess, S. M., B. G. Redfield, and S. Udenfriend: The effect of monoamine oxidase inhibitors and tryptophan on the tryptamine content of animal tissues and urine. J. Pharmacol. exp. Ther. 127, 178 (1959c).PubMedGoogle Scholar
  796. Hess, S. M., B. G. Redfield, and H. Weissbach: Marsilid metabolism. Fed. Proc. 17, 377 (1958).Google Scholar
  797. Hess, S. M., B. G. Redfield, B. G. Redfield, and S. Udenfriend: The relationship between iproniazid metabolism and the duration of its effect on monoamine oxidase. J. Pharmacol. exp. Ther. 124, 189 (1958).PubMedGoogle Scholar
  798. Hester, J. B., M. E. Greig, W. C. Anthony, R. V. Heinzelman, and J. Szmuszkovicz: Enzyme inhibitory activity of 3-(2-aminobutyl) indol derivatives. J. med. Chem. 7, 274 (1964).PubMedGoogle Scholar
  799. Heyl, D., E. Luz, S. A. Harris, and K. Folkers: Chemistry of vitamin B6. III. Additional pyridoxylideneamines and pyridoxylamines. J. Amer. chem. Soc. 74, 414 (1952).Google Scholar
  800. Hicks, R., and G. B. West: Adrenal cortical hormones and the formation of histamine and 5-hydroxytryptamine. Nature (Lond.) 181, 1342 (1958a).Google Scholar
  801. Hicks, R., and G. B. West: Adrenalectomy and tissue amines. Nature (Lond.) 182, 401 (1958b).Google Scholar
  802. Highman, B., and H. M. Maling: Neuropathologic lesions in dogs after prolonged administration of phenylisopropylhydrazine (JB 516) and phenylisobutylhydrazine (JB 835). J. Pharmacol. exp. Ther. 137, 344 (1962).PubMedGoogle Scholar
  803. Himwich, H. E., E. Costa, G. R. Pscheidt, and W. G. Van Meter: MAO and mechanisms in brain. Ann. N.Y. Acad. Sci. 80, 614 (1959).Google Scholar
  804. Himwich, H. E., E. Costa, W. G. Van Meter, and H. Owens: Results reported at the Roche Symposium on MAO inhibitors. Chicago 1958.Google Scholar
  805. Himwich, W. A., and E. Costa: Behavioral changes associated with changes in concentrations of brain serotonin. Fed. Proc. 19, 838 (1960).PubMedGoogle Scholar
  806. Himwich, W. A., and H. E. Himwich: Brain serotonin in relation to imipramine interaction with a mono-amine oxidase inhibitor. In: Neuropsychopharmacology, vol. 2, p. 485, edit. E. Rothlin. Amsterdam: Elsevier Publ. Co. 1961.Google Scholar
  807. Himwich, W. A., and J. C. Petersen: Effect of the combined administration of imipramine and a mono-amine oxidase inhibitor. Amer. J. Psychiat. 117, 928 (1961).PubMedGoogle Scholar
  808. Hirsch, C. W., R. Kuntzman, and E. Costa: Effects of dopa-5-HTP decarboxylase inhibition on synthesis of brain amines. Fed. Proc. 21, 364 (1962a).Google Scholar
  809. Hirsch, C. W., R. Kuntzman, and B. B. Brodie: Inhibition of the biosynthesis of brain norepinephrine in mice. Pharmacologist 4, 179 (1962b).Google Scholar
  810. Hodge, J. V., J. A. Oates, and A. Sjoerdsma: Reduction of the central effects of tryptophan by a decarboxylase inhibitor. Clin. Pharmacol. Ther. 5, 149 (1964).PubMedGoogle Scholar
  811. Hoffmann, C., J. Frossard, K. Mai-Xuan et I. Karadavidoff: Hydrazines N1N2 disub-stituées et monoamino oxydase. Ann. pharm. franc. 20, 539 (1962).PubMedGoogle Scholar
  812. Hogans, A. F., and C. C. Porter: Excretion of the optical isomers of α-methyl-dopa. Fed. Proc. 20, 113 (1961).Google Scholar
  813. Holmstedt, B., and R. Tham: A spectrophotometric method for determination of diamine oxidase (DAO) activity. Acta physiol. scand. 45, 152 (1959).PubMedGoogle Scholar
  814. Holtz, P.: Über die Entstehung von Histamin und Tryramin im Organismus. Klin. Wschr. 16, 1561 (1937).Google Scholar
  815. Holtz, P.: Über die Bildung einer blutdrucksteigernden Substanz aus Dioxyphenylalanin durch tierisches Gewebe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 190, 178 (1938).Google Scholar
  816. Holtz, P.: Dopadecarboxylase. Naturwissenschaften 27, 724 (1939).Google Scholar
  817. Holtz, P.: Fermentative Aminbildung aus Aminosäuren. Ergebn. Physiol. 44, 230 (1941).Google Scholar
  818. Holtz, P.: Über das Vorkommen der Dopadecarboxylase im Pankreas. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 199, 145 (1942).Google Scholar
  819. Holtz, P.: Role of L-dopa decarboxylase in the biosynthesis of catecholamines in nervous tissue and the adrenal medulla. Pharmacol. Rev. 11, 317 (1959).PubMedGoogle Scholar
  820. Holtz, P.: Aminosäurendecarboxylasen des Nervengewebes. Psychiat. et Neurol. (Basel) 140, 175 (1960).Google Scholar
  821. Holtz, P., u. F. Bachmann: Aktivierung der Dopadecarboxylase des Nebennierenmarks durch Nebennieren-Rindenextrakt. Naturwissenschaften 39, 116 (1952).Google Scholar
  822. Holtz, P., u. C. Carsten: Einfluss von Vitamin B6 (Pyridoxin) und Pyridoxalphosphat auf die Dopadecarboxylase tierischer Organe. Naturwissenschaften 39, 235 (1952a).Google Scholar
  823. Holtz, P., H. Balzer u. E. Westermann: Die Beeinflussung der Reserpinwirkung auf das Nebennierenmark durch Hemmung der Monoaminoxydase. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 361 (1957a).Google Scholar
  824. Holtz, P., H. Balzer u. E. Westermann: Beeinflussung der Narkosedauer durch Hemmung der Cholinesterase des Gehirns. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 233, 438 (1958).Google Scholar
  825. Holtz, P., H. Balzer u. E. Westermann, E. Wezler: Beeinflussung der Evipannarkose durch Reserpin, Iproniazid und biogene Amine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 333 (1957b).Google Scholar
  826. Holtz, P., H. Balzer, u. K. Credner: Decarboxylierung von Dioxyphenylalanin (DOPA) und Histidin in vivo. Naturwissenschaften 29, 649 (1941).Google Scholar
  827. Holtz, P., H. Balzer, u. W. Koepp: Die enzymatische Entstehung von Oxytyramin im Organismus und die physiologische Bedeutung der Dopadecarboxylase. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 200, 356 (1942a).Google Scholar
  828. Holtz, P., H. Balzer, u. A. Reinhold: Aminbildung durch Darm. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 193, 688 (1939a).Google Scholar
  829. Holtz, P., H. Balzer, u. C. Strübing: Über das Vorkommen der Dopadecarboxylase im Pancreas. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 199, 145 (1942b).Google Scholar
  830. Holtz, P., H. Balzer, u. H. Walter: Über die Spezifität der Aminsäuredecarboxylasen. Hoppe-Seylers Z. physiol. Chem. 262, 111 (1939b).Google Scholar
  831. Holtz, P., A. Engelhardt u. G. Thielecke: Aktivierung und Hemmung der Histidindecarboxy-lase durch Vitamin B6 (Pyridoxin). Naturwissenschaften 39, 266 (1952b).Google Scholar
  832. Holtz, P., u. R. Heise: Über die Entstehung von Histamin im Organismus. Naturwissenschaften 25, 201 (1937a).Google Scholar
  833. Holtz, P., u. R. Heise: Über Histaminbildung im Organismus. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 186, 377 (1937b).Google Scholar
  834. Holtz, P., u. R. Heise, u. K. Lüdtke: Fermentativer Abbau von 1-Dioxyphenylalanin (DOPA) durch Niere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 191, 87 (1938a).Google Scholar
  835. Holtz, P., u. R. Heise, u. W. Spreyer: Fermentative Bildung und Zerstörung von Histamin und Tyramin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 188, 580 (1938b).Google Scholar
  836. Holtz, P., u. H. Janisch: Über Tyraminbildung im Organismus. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 186, 684 (1937).Google Scholar
  837. Holtz, P., and D. Palm: Pharmacological aspects of vitamin B6. Pharmacol. Rev. 16, 113 (1964).PubMedGoogle Scholar
  838. Holtz, P., A. Reinhold u. K. Credner: Fermentativer Abbau von L-Dioxyphenylalanin (DOPA) durch Leber und Darm. Hoppe-Seylers Z. physiol. Chem. 261, 278 (1939c).Google Scholar
  839. Holtz, P., and K. Stock: Formation of tetrahydropapaveroline from dopamine in vitro. Nature (Lond.) 203, 656 (1964a).Google Scholar
  840. Holtz, P., u. E. Westermann: Über den Einfluβ des Thyroxins und des Hungerns auf die Aktivität der Monoaminoxydase und Dopadecarboxylase der Leber. Naunyn-Schmiede-bergs Arch. exp. Path. Pharmak. 228, 322 (1956).Google Scholar
  841. Holtz, P., u. E. Westermann: Pharmakologie des Tetrahydropapaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 248, 387 (1964b).Google Scholar
  842. Holtz, P., u. E. Westermann: Über die Dopadecarboxylase und Histidindecarboxylase des Nervengewebes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 227, 538 (1956a).Google Scholar
  843. Holtz, P., u. E. Westermann: Über die Vorstufe des Nor-adrenalins im Nebennierenmark und Nervengewebe. Biochem. Z. 327, 502 (1956b).PubMedGoogle Scholar
  844. Holtz, P., u. E. Westermann: Hemmung der Glutaminsäuredecarboxylase des Gehirns durch Brenzcatechinderivate. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 311 (1957).Google Scholar
  845. Holzer, G., u. O. Hornykiewicz: Über den Dopamin-(Hydroxytyramin-) Stoffwechsel im Gehirn der Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 237, 27 (1959).Google Scholar
  846. Hope, D. B., and A. D. Smith: Distribution and activity of monoamine oxidase in mouse tissues. Biochem. J. 74, 101 (1960).PubMedGoogle Scholar
  847. Horita, A.: Beta-phenylisopropylhydrazine, a monoamine oxidase inhibitor. Fed. Proc. 17, 379 (1958a).Google Scholar
  848. Horita, A.: Beta-phenylisopropvlhydrazine, a potent and long acting monoamine oxidase inhibitor. J. Pharmacol. exp/Ther. 122, 176 (1958b).Google Scholar
  849. Horita, A.: Pharmacology of JB-516 (PIH). Ann. N.Y. Acad. Sci. 80, 590 (1959).PubMedGoogle Scholar
  850. Horita, A.: Route of administration of the hydrazines as a determinant in the selective inhibition of brain and liver monoamine oxidase. Fed. Proc. 19, 279 (1960).Google Scholar
  851. Horita, A.: The route of administration of some hydrazine compounds as a determinant of brain and liver monoamine oxidase inhibition. Toxicol. appl. Pharmacol. 3, 474 (1961).PubMedGoogle Scholar
  852. Horita, A.: The influence of pH on serotonin metabolism by rat tissue homogenates. Biochem. Pharmacol. 11, 147 (1962a).PubMedGoogle Scholar
  853. Horita, A.: A possible source of error in the measurement of 5-hydroxytryptophan decarboxylase activity in rat tissues. Biochem. Pharmacol. 11, 672 (1962b).PubMedGoogle Scholar
  854. Horita, A.: Some antagonists of the monoamine oxidase inhibitors. Ann. N.Y. Acad. Sci. 107, 951 (1963a).PubMedGoogle Scholar
  855. Horita, A.: The influence of drug-tissue interactions on the inhibition of monoamine oxidase by pheniprazine and iproniazid. J. Pharmacol. exp. Ther. 142, 141 (1963b).PubMedGoogle Scholar
  856. Horita, A., and C. Chinn: An analysis of the interaction of reversible and irreversible monoamine oxidase inhibitors. Biochem. Pharmacol. 13, 371 (1964).PubMedGoogle Scholar
  857. Horita, A., and C. Matsumoto: The antagonism of hydrazine-type inhibitors of monoamine oxidase by sodium pyruvate. Life Sci. 1962, 491.Google Scholar
  858. Horita, A., and W. R. Mcgrath: The interaction between reversible and irreversible monoamine oxidase inhibitors. Biochem. Pharmacol. 3, 206 (1960a).PubMedGoogle Scholar
  859. Horita, A., and W. R. Mcgrath: Specific liver and brain monoamine oxidase inhibition by alkyl-and arylalkylhydra-zines. Proc. Soc. exp. Biol. (N.Y.) 103, 753 (1960b).Google Scholar
  860. Horita, A., and R. G. Parker: Comparison cf monoamine oxidase inhibitory effects of iproniazid and its phenyl congener. Proc. Soc. exp. Biol. (N.Y.) 99, 617 (1958).Google Scholar
  861. Hornykiewicz, O.: The action of dopamine on the arterial blood pressure of the guinea-pig. Brit. J. Pharmacol. 13, 91 (1958).PubMedGoogle Scholar
  862. Horowitz, Z. P.: A biochemical and pharmacological correlation of the effects of certain monoamine oxidase inhibitors. Diss. Pittsburgh (Pa.) 1960.Google Scholar
  863. Horwitz, D., L. I. Goldberg, and A. Sjoerdsma: Effects of monoamine oxidase inhibitors on the pressor actions of norepinephrine and dopamine in man. Clin. Res. Proc. 8, 21 (1960a).Google Scholar
  864. Horwitz, D., L. I. Goldberg, and A. Sjoerdsma: Increased blood pressure responses to dopamine and norepinephrine produced by monoamine oxidase inhibitors in man. J. Lab. clin. Med. 56, 747 (1960b).PubMedGoogle Scholar
  865. Horwitz, D., L. I. Goldberg, and A. Sjoerdsma: Possible hemodynamic basis for beneficial effects of a monoamine oxidase inhibitor in angina pectoris. Circulation 24, 959 (1961).Google Scholar
  866. Horwitz, D., W. Lovenberg, K. Engelmann, and A. Sjoerdsma: Monoamine oxidase inhibitors, tyramine, and cheese. J. Amer. med. Ass. 188, 1108 (1964).Google Scholar
  867. Horwitz, D., and A. Sjoerdsma: A basis for the use of monoamine oxidase inhibitors in angina pectoris. Ann. N.Y. Acad. Sci. 107, 1033 (1963).PubMedGoogle Scholar
  868. Horwitz, D., and A. Sjoerdsma: Effects of alpha-methyl-meta-tyrosine intravenously in man. Life Sci. 3, 41 (1964).PubMedGoogle Scholar
  869. Huang, I., S. Tannenbaum, and D. Y.-Y. Hsia: Development of 5-hydroxytryptophan decarboxylase activity in rat kidney. Nature (Lond.) 186, 717 (1960).Google Scholar
  870. Huang, I., S. Tannenbaum, and D. Y.-Y. Hsia: Studies on inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Proc. Soc. exp. Biol. (N.Y.) 112, 81 (1963).Google Scholar
  871. Hukovic, S., and E. Muscholl: Die Noradrenalin-Abgabe aus dem isolierten Kaninchen-Herzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 244, 81 (1962).Google Scholar
  872. Hull, L. D., and A. Horita: Reserpine reversal response by iproniazid: a dose-dependent phenomenon. Nature (Lond.) 202, 604 (1964).Google Scholar
  873. Huszti, Z., and J. Borsy: The effect of diethyltryptamine and its derivatives on moonamine oxidase. Biochem. Pharmakol. 13, 1151 (1964).Google Scholar
  874. Iida, N.: Inhibitory effect of quinine on the oxidation of adrenaline. Nippon Yakurigaku Zasshi 54, 648 (1958) Brevaria 31. [Chem. Abstr. 53, 18290c (1959).]Google Scholar
  875. Iisalo, E.: In the enzymatic destruction of adrenaline and noradrenaline in smooth muscle tissues. Acta physiol. scand. 42, Suppl. 145, 75 (1957).Google Scholar
  876. Iisalo, E.: Enzyme action on noradrenaline and adrenaline studies on bovine and guinea-pig tissues in vitro with special reference to monoamine oxidase. Acta pharmacol. (Kbh.) 19, Suppl. 1, 5 (1962).Google Scholar
  877. Iisalo, E., and A. Pekkarinen: On the enzymatic destruction of adrenaline and noradrenaline in the heart muscle. Acta physiol. scand. 31, Suppl. 114, 25 (1954). Enzyme action on adrenaline and noradrenaline. Studies on heart muscle in vitro. cta pharmacol. (Kbh). 15, 157 (1958).Google Scholar
  878. Imaizumi, R., M. Oka, and T. Ohuchi: Mechanism of the antihypertensive effect of α-methyl-dopa. Nature (Lond.) 203, 982 (1964).Google Scholar
  879. Iisalo, E., K. Omori, A. Unoki, K. Sano, Y. Watari, J. Namba, and K. Inui: Physiological significance of monoamine oxidase. Jap. J. Pharmacol. 8, 87 (1959).Google Scholar
  880. Imiya, T.: On the problem of precursors of adrenalin. VI. Especially on dopa decarboxylase and hydroxytryptamine. J. Osaka med. Sch. 40, 1494 (1941). [CLARK, W. G., Pharmacol. Rev. 11, 330 (1959).]Google Scholar
  881. Iorio, A. d’, et L.-P. Bouthillier: Métabolisme de la DL-histidine (C14OOH) radioactive chez le rat. Rev. canad. Biol. 9, 388 (1950).PubMedGoogle Scholar
  882. Iraldi, A. P. De, and G. R. De Lores Arnaiz: 5-Hydroxytryptophan-decarboxylase in normal and denervated pineal gland of rats. Life Sci. 3, 589 (1964).Google Scholar
  883. Iraldi, A. P. De, and E. De Robertis: Action of reserpine, iproniazid and pyrogallol on nerve endings of the pineal gland. Int. J. Neuropharmacol. 2, 231 (1963).Google Scholar
  884. Irvine, R. O. H., K. P. O’brien, and J. D. K. North: Alpha methyl dopa in treatment of hypertension. Lancet 1962 I, 300.Google Scholar
  885. Irwin, S.: Behavioral effects of chronic iproniazid administration. Fed. Proc. 18, 406 (1959).Google Scholar
  886. Irwin, S., and I. I. A. Tabachnick: Correlation between locomotor stimulant and brain monoamine-oxidase-inhibitory activity of iproniazid, nialamide and pheniprazine in the rat. Fed. Proc. 20, 396 (1961).Google Scholar
  887. Ivy, A. D., T. M. Lin, E. K. Ivy, and E. Karvinen: Effect of histaminase inhibitors on gastric secretion. Amer. J. Physiol. 186, 239 (1956).PubMedGoogle Scholar
  888. Izquierdo, J. A., A. M. Biscardi, and J. A. Carizzoni: Detection of catechol amines through (variation of) carotid pressure in rats previously treated with iproniazid. An. Farm. Quim. S. Paulo 11, 43 (1960). [Chem. Abstr. 56, 1959d (1962).]Google Scholar
  889. Jäätelä, A. J., and M. K. Paasonen: Effect of pyrocatechol on the change of noradrenaline content induced in rat brain by raunescine. Acta pharmacol. (Kbh.) 18, 95 (1961).Google Scholar
  890. Jackson, R. L., D. B. Meyers, and J. W. Martin Jr.: Effects of four phenylsubstituted 1:2:4-triazoles on various enzvmic and respiratory activities, in vitro. Fed. Proc. 21, 174 (1962).Google Scholar
  891. Jacob, J., and P. Echinard-Garin: Increased toxicity of digitaline in the guinea pig due to iproniazid and phenylisopropylhydrazine. Biochem. Pharmacol. 8, 108 (1961).Google Scholar
  892. Jacobi, H. P., J. Haggstrom, D. Rosenberg, M. Kelly and M. J. Carver: Effects of phenothiazine derivatives on enzyme activity. Abstr. V. Int. Congr. Biochem., Moscow 18.70.2037 (1961).Google Scholar
  893. Jacoby, G. A., and B. N. LaDu: Studies on the specificity of tyrosine-a-ketoglutarate trans-aminase. J. biol. Chem. 239, 419 (1964).PubMedGoogle Scholar
  894. Jakubovic, A., U. J. Necina: Der Einfluβ von Methylenblau auf die Aktivität der Mono-aminoxydase in Leber und Gehirn von Ratten nach verschiedener Applikation. Arzneimittel-Forsch. 13, 134 (1963).Google Scholar
  895. Jenney, E. H., and C. C. Pfeiffer: The convulsant effect of hydrazides and the antidotal effect of anticonvulsants and metabolites. J. Pharmacol. exp. Ther. 122, 110 (1958).PubMedGoogle Scholar
  896. Jenney, E. H., R. P. Smith, and C. C. Pfeiffer: Pyridoxine as an antidote to semicarb-azide seizure. Fed. Proc. 12, 333 (1953).Google Scholar
  897. Jenni, A., U. A. Pletscher: Monoaminoxydase-Hemmer. Schweiz. Apoth.-Ztg 100, 177 (1962).Google Scholar
  898. Jepson, J. B., W. Lovenberg, P. Zaltzman, J. A. Oates, A. Sjoerdsma, and S. Uden-Friend: Amine metabolism, studied in normal and phenylketonuric humans by mono-amine oxidase inhibition. Biochem. J. 74, 5 P (1960).Google Scholar
  899. Johnson, G. E., E. Gordon, and E. A. Sellers: The influence of iproniazid and pyrogallol on the thermogenic effects of noradrenaline. Canad. J. Biochem. 40, 631 (1962) [Psycho-pharmacol. Abstr. 2, 477 (1962)].PubMedGoogle Scholar
  900. Johnson, G. E., E. Gordon, and E. A. Sellers: The effects of reserpine, noradrenaline and inhibitors on the metabolic rate of rats. Fed. Proc. 19, 297 (1960).Google Scholar
  901. Johnson, P. C., and G. Sevelius: Effect of nitroglycerin, pentaerythritol tetranitrate and a new monoamine oxidase inhibitor on coronary blood flow and cardiac minute volume. Clin. Res. Proc. 8, 74 (1960).Google Scholar
  902. Jolles-Bergeret, B., J. Labouesse et F. Chatagner: Influence des hormones thyroidiennes sur la désuifuration de la cystéine par le foie de rat. Comparaison du comportement de la désulfuration avec celui d’autres réactions enzymatiques nécessitant le phosphate de pyridoxal. Bull. Soc. Chim. biol. (Paris) 42, 51 (1960).Google Scholar
  903. Jori. A., A. Buonaccorsi, L. Valzelli, and S. Garattini: New orally active monoamine oxidase inhibitors. Life Sci. 1963, 611.Google Scholar
  904. Jori. A., L. Lamesta, e A. Valsecchi: Variazioni glicemiche indotte dalla serotonina e da sostanze capaci di modificare il contenuto di serotoninia. Boll. Soc. ital. Biol. sper. 35, 716 (1959).PubMedGoogle Scholar
  905. Joyce. D.: Changes in the 5-hydroxytryptamine content of rat, rabbit and human brain after death. Brit, J. Pharmacol. 18, 370 (1962).Google Scholar
  906. Jucker, E.: Neuartige, basisch substituierte Hydrazine und ihre Anwendung in der Arzneimittelsynthese. Angew. Chem. 71, 321 (1959).Google Scholar
  907. Juva, K., L. Mikkonen, T. Tuominen, and E. Kulonen: Iproniazid and experimental lathyrism. Experientia (Basel) 15, 350 (1959).Google Scholar
  908. Kabakow, B., B. Weinstein, G. Ross, and M. Tresser: A clinical and metabolic study of metastatic carcinoid. Amer. J. Med. 26, 636 (1959).PubMedGoogle Scholar
  909. Kadzielawa, K.: Mechanism of action of guanethidine. Brit. J. Pharmacol. 19, 74 (1962).PubMedGoogle Scholar
  910. Kärki, N., R. Kuntzman, and B. B. Brodie: Norepinephrine and serotonin brain levels at various stages of ontogenetic development. Fed. Proc. 19, 282 (1960).Google Scholar
  911. Kärki, N., R. Kuntzman, and B. B. Brodie: Storage, synthesis and metabolism of monoamines in the developing brain. J. Neurochem. 9, 53 (1962).PubMedGoogle Scholar
  912. Käser, H.: Die Bedeutung der 3-Methyoxy-4-hydroxy-mandelsäure (MHMS) für die Differentialdiagnostik neutraler Tumoren im Kindesalter. Schweiz. med. Wschr. 91, 586 (1961).Google Scholar
  913. Käser, H., and W. von Studnitz: Urine of childern with sympathetic tumors. Amer. J. Dis. Child. 102, 199 (1961).PubMedGoogle Scholar
  914. Kahlson, G., and E. Rosengren: Inhibition of histamine formation and some of its consequences. J. Physiol. (Lond.) 149, 66P (1959).Google Scholar
  915. Kahlson, G., and S. E. Svensson: Inhibition of histamine formation in vivo. Nature (Lond.) 194, 876 (1962).Google Scholar
  916. Kahlson, G., and R. Thunberg: Observations on the inhibition of histamine formation. J. Physiol. (Lond.) 169, 467 (1963).Google Scholar
  917. Kakimoto, Y., and M. D. Armstrong: Identification of octopamine in animals treated with monoamine oxidase inhibitors. Fed. Proc. 19, 295 (1960).Google Scholar
  918. Kakimoto, Y., On the identification of octopamine in mammals. J. biol. Chem. 237, 422 (1962).PubMedGoogle Scholar
  919. Kako, K., A. Chrysohou, and R. J. Bing: Factors affecting myocardial storage and release of catecholamines. Circulat. Res. 9, 295 (1961).PubMedGoogle Scholar
  920. Kalbermatten, J. P. De: Effet de la sérotonine sur l’hypersensibilité de dénervation du ganglion sympathique cervical isolé du rat. Helv. physiol. pharmacol. Acta 20, 294 (1962).Google Scholar
  921. Kaliman, P. A.: Enzymatic oxidation of adrenaline, noradrenaline and tyramine in the liver and heart of rabbits. Biokhimiya 26, 256 (1961) [Engl. Ed.].Google Scholar
  922. Kalyankar, G. D., and E. E. Snell: Pyridoxal-catalyzed decarboxylation of amino acids. Biochemistry 4, 594 (1962).Google Scholar
  923. Kameswaran, L., J. M. Telford, and G. B. West: Histamine formation in the rat. J. Physiol. (Lond.) 157, 23P (1961).Google Scholar
  924. Kameswaran, L., and G.B. West: Histidine decarboxylase in rat hepatoma. J. Pharm. Pharmacol. 13, 191 (1961).PubMedGoogle Scholar
  925. Kamijo, K., G. B. Koelle, and H. H. Wagner: Modification of the effect of sympathomi-metic amines and of adrenergic nerve stimulation by l-isonicotinyl-2-isopropylhydrazine (IIH) and isonicotinic acid hydrazide (INH). J. Pharmacol. exp. Ther. 117, 213 (1956).PubMedGoogle Scholar
  926. Kaminski, D., B. Dubntck, and F. E. Anderson: Monoamine oxidase inhibitors. Hydrazine derivatives. J. med. Chem. 7, 367 (1964).Google Scholar
  927. Kanaoka, Y., H. Weissbach, T. E. Smith, and B. Witkop: Oxidation of kynuramine derivatives by monoamine oxidase and the enzymatic conversion of dihydronorkynuramine to indigo. J. Amer. chem. Soc. 83, 732 (1961).Google Scholar
  928. Kapeller-Adler, R., U. J. Krael: Untersuchungen über die Stickstoffverteilung in den Muskehl verschiedener Tierklassen. Biochem. Z. 221, 437 (1930).Google Scholar
  929. Kapeller-Adler, R., U. J. Krael: Über das Schicksal der mit der Nahrung aufgenommenen Alkylamine und über deren angebliche Entmethylierung im Organismus sowie über das Vorkommen von Mono-methylamin im normalen Harn. Biochem. Z. 235, 394 (1931).Google Scholar
  930. Kapeller-Adler, and H. Macfarlane: Purification and identification of hog-kidney histaminase. Biochim. biophys. Acta (Amst.) 67, 542 (1963).Google Scholar
  931. Kaplan, N. O.: Coenzyme metabolism of the brain. In: The Neurochemistry of nucleotides and amino acids, p. 70, edit. R. O. Brady and D. B. Tower. New York: Wiley 1960.Google Scholar
  932. Kaplan, N. O., M. M. Ciotti, J. Van Eys, and R. M. Burton: Effect of pyridine derivatives on animal tissue, diphosphopyridine nucleotitidases. J. biol. Chem. 234, 134 (1959).PubMedGoogle Scholar
  933. Kaplan, N. O., M. M. Ciotti, J. Van Eys, and F. E. Stolzenbach: Studies on the interaction of diphosphopyridine nucleotide analogs with dehydrogenases. Arch. Biochem. 69, 441 (1957).PubMedGoogle Scholar
  934. Katz, R., J. Klinger, L. Silva, J. Rodriguez, and H. Ducci: Serial hepatic study in patients treated with iproniazid. Ann. N.Y. Acad. Sci. 80, 898 (1959).PubMedGoogle Scholar
  935. Keasling, H. H., R. R. Rüssel, and H. J. Treizenberg: The comparative effects of etrypt-amine, pheneline and isocarboxazide on electroshock thresholds. Pharmacologist 4, 182 (1962).Google Scholar
  936. Keglević, D., Z. Super, S. Kveder, S. Jskrić, S. Kečkeč, and A. Kisič: The metabolism of exogenous 14C-labelled 5-hydroxytryptamine in rats. Biochem. J. 73, 53 (1959).PubMedGoogle Scholar
  937. Keller, R.: Der Einfluβ von Iproniazid auf den Histamin-Stoffwechsel der Albinoratte in vivo. Arzneimittel-Forsch. 9, 346 (1959).Google Scholar
  938. Keller, R.: Histaminfreisetzung und proteolytische Aktivität unter verschiedenen Versuchsbedingungen. Helv. physiol. pharmacol. Acta 18, C 85 (1960a).Google Scholar
  939. Keller, R.: Beeinflussung der proteolytischen Aktivität in Geweben durch Iproniazid. Naturwissenschaften 47, 379 (1960b).Google Scholar
  940. Kim, K. S., and P. A. Shore: Mechanism of action of reserpine and insulin on gastric amines and gastric acid secretion, and the effect of monoamine oxidase inhibition. J. Pharmacol. exp. Ther. 141, 321 (1963).PubMedGoogle Scholar
  941. Kirberger, E.: Variable action of monoamine oxidase-inhibiting hydrazines on serotonin metabolism. Nature (Lond.) 197, 1211 (1963).Google Scholar
  942. Kirkendall, W. M., and W. R. Wilson: Pharmacodynamics and clinical use of guanethi-dine, bretylium and methyldopa. Amer. J. Cardiol. 9, 107 (1962).PubMedGoogle Scholar
  943. Kirshner, N., C. Mcgoodall, and L. Rosen: The effect of iproniazid on the metabolism of DL-epinephrine-2-C14 in the human. J. Pharmacol. exp. Ther. 127, 1 (1959).Google Scholar
  944. Kirshner, N., L. Terry, and D. D. Pollard: The metabolism of DL-adrenaline-2-C14 in the cat. I. Urinary catabolites. Arch. int. Pharmacodyn. 131, 421 (1961).PubMedGoogle Scholar
  945. Kishi, S., B. Asano, S. Ichh, and K. Ashikawa: Monoamine oxidase activity in the liver of rats fed on hepatic carcinogen. Gann 47, 223 (1956). [Excerpta med. (Amst.), Sect. V, 10, Abstr. Nr. 627 (1957).]Google Scholar
  946. Kivalo, E., and U. K. Rinne: Activity of the hypothalamo-neurohypophysical neurosecre-tory system after iproniazid treatment. Ann. Med. exp. Fenn. 39, 50 (1961).PubMedGoogle Scholar
  947. Kivalo, E., and H. Karinkanta: The effect of imipramine on the 5-hydroxytryptamine content and monoamine oxidase activity of the rat brain and on the excretion of 5-hydroxyindole acetic acid. J. Neurochem. 8, 105 (1961).PubMedGoogle Scholar
  948. Kizer, D. E., and S. K. Chan: The effect of azo-dye carcinogenesis on rat liver 5-hydroxy-tryptophan decarboxylase. Proc. Amer. Ass. Cancer Res. 3, 126 (1960).Google Scholar
  949. Kizer, D. E., The effect of hepatocarcinogenesis upon 5-hydroxytryptophan decarboxylase and serotonin deaminase. Cancer Res. 21, 489 (1961).PubMedGoogle Scholar
  950. Klein, K.: Klinisch-experimentelle Untersuchungen über die Wirkung von Niamid auf Haemodynamik und Gerinnung. Chemotherapia (Basel) 4, 203 (1962a).Google Scholar
  951. Klein, K.: Dynamographische Untersuchungen über die Beeinflussung zerebraler Kreislaufgröβen durch den „Monoaminoxydase-Hemmer“ Niamid. Med. Klin. 57, 1089 (1962b).PubMedGoogle Scholar
  952. Klingman, G. I.: Effects of immunosympathectomy on catecholamine levels and dopa decarboxylase activity in peripheral tissues of the rat. Fed. Proc. 23, 455 (1964).Google Scholar
  953. Klingman, G. I., S. Kardaman, and J. Haber: Amine levels, monoamine oxidase and dopa-decarboxylase activities in the gastro-intestinal tract of the rat. Life Sci. 3, 1355 (1964).PubMedGoogle Scholar
  954. Knick, B.: Klinische und experimentelle Daten zu den neurohumoralen Gefäβ-und Gewebs-wirkungen von Nialamid bei cardiovasculären und Stoffwechselerkrankungen. Chemotherapia (Basel) 4, 297 (1962).Google Scholar
  955. Knoll, J., and B. Knoll: Reserpine: modification of its tranquilizer effect and analysis of its central mode of action. Arch. int Pharmacodyn. 133, 310 (1961).Google Scholar
  956. Kobayashi, Y.: A histamine metabolizing enzyme system of mouse liver. Arch Biochem. 71, 352 (1957).PubMedGoogle Scholar
  957. Kobayashi, Y.: Effect of x-irradiation on histidine decarboxylase of rat stomach and intestine. Fed. Proc. 21, 424 (1962).Google Scholar
  958. Kobayashi, Y., and T. Okuyama: Recovery of diamine oxidase activity inhibited by isonicotinic acid hydrazide and its derivatives. Biochem. Pharamocol. 11, 949 (1962).Google Scholar
  959. Kobayashi, Y., and R. W. Schayer: Action of rat liver monoamine oxidase on multiple substrates. Arch. Biochem. 58, 181 (1955).PubMedGoogle Scholar
  960. Kobinger, W.: Beeinflussung der Cardiazolkrampfschwelle durch veränderten 5-Hydroxy-tryptamin-gehalt des Zentralnervensystems. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 233, 559 (1958).Google Scholar
  961. Kobinger, W.: Förderung von Streckkrämpfen und experimentelle Katatonie. Naunvn-Schmiedebergs Arch. exp. Path. Pharmak. 236, 123 (1959).Google Scholar
  962. Kobinger, W., u. N. F. Friis: Beeinflussung von Gefäβreaktionen am isolierten Kaninchenohr durch Monoaminoxydasehemmkörper. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 242, 238 (1961).Google Scholar
  963. Koechlin, B. A., and V. Iliev: Metabolism of iproniazid. Ann. N. Y. Acad. Sci. 80, 864 (1959).PubMedGoogle Scholar
  964. Koechlin, B. A., M. A. Schwartz, and W. E. Oberhaensli: Metabolism of C14-iproniazid and C14-iso-carboxazid in man. J. Pharmacol. exp. Ther. 138, 11 (1962).PubMedGoogle Scholar
  965. Koelle, G. B.: Pharmacologic significance of inhibition of monoamine oxidase. J. clin exp. Psychopath. 19, Suppl. 1, 37 (1958).PubMedGoogle Scholar
  966. Koelle, G. B.: Possible mechanisms for the termination of the physiological actions of catecholamines. Pharmacol. Rev. 11, 381 (1959).PubMedGoogle Scholar
  967. Koelle, G. B., and A. De T. Valk Jr.: Physiological implications of the histochemical localization of monoamine oxidase. J. Physiol. (Lond.) 126, 434 (1954).Google Scholar
  968. Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines. IV. The production of histamine from histidine by bacillus coli communis. J. biol. Chem. 39, 539 (1919).Google Scholar
  969. Kohn, H. I.: CCXII. Tyramine oxidase. Biochem. J. 31, 1693 (1937).PubMedGoogle Scholar
  970. Kohn, R.: Methylamin als Zwischenprodukt des Glykokollabbaues in der überlebenden Leber. Hoppe-Seylers Z. physiol. Chem. 200, 191 (1931).Google Scholar
  971. Koivusalo, M., I. Pentillä, A. Raina, and R. Tenhunen: Effect of hydrazides on liver alanine and aspartate transaminase and lactate dehydrogenase in developing chick embryo. Acta physiol. scand. 57, 454 (1963).PubMedGoogle Scholar
  972. Kopin, I. J.: Technique for the study of alternate metabolic pathways; epinephrine metabolism in man. Science 131, 1372 (1960).PubMedGoogle Scholar
  973. Kopin, I. J.: Storage and metabolism of catecholamines: the role of monoamine oxidase. Pharmacol. Rev. 16, 179 (1964).PubMedGoogle Scholar
  974. Kopin, I. J., and J. Axelrod: The metabolic fate of epinephrine in the rat. Fed. Proc. 19, 295 (1960).Google Scholar
  975. Kopin, I. J., and E. K. Gordon: The metabolic fate of H3-epinephrine and C14-metanephrine in the rat, J. biol. Chem. 236, 2109 (1961).PubMedGoogle Scholar
  976. Kopin, I. J., J. E. Fischer, J. Musacchio, and W.D. Horst: Induction of false neurochemical transmitters as a mechanism for the sympathetic blocking action of monoamine oxidase inhibitors (MAOI). Pharmacologist 6, 175 (1964).Google Scholar
  977. Kopin, I. J., J. E. Fischer, J. Musacchio, and W.D. Horst: Evidence for a false neurochemical transmitter as mechanism for the hypo-tensive effect of monoamine oxidase inhibitors. Proc. nat. Acad. Sci. (Wash.) 52, 716 (1964).Google Scholar
  978. Kopin, I. J., J. E. Fischer, J. Musacchio, and E. K. Gordon: Metabolism of administered and drug-released norepinephrine-7-H3 in the rat. J. Pharmacol. exp. Ther. 140, 207 (1963).PubMedGoogle Scholar
  979. Kopin, I. J., J.E. Fischer, G. Hertting, and E.K. Gordon: Fate of norepinephrine-H3 in the isolated perfused rat heart. J. Pharmacol. exp. Ther. 138, 34 (1962).PubMedGoogle Scholar
  980. Kory, M., and E. Mingioli: Volatile amine oxidase inhibitor from hydrazine derivative. Biochem. Pharmacol. 13, 577 (1964).PubMedGoogle Scholar
  981. Kosower, E. M.: Molecular Biochemistry, p. 71. New York: McGraw-Hill Book Co. Inc. 1962.Google Scholar
  982. Kotharin, N. J., J. C. Saunders, and N. S. Kline: Effect of phenothiazines and hydrazines on pituitary-adrenal-cortical response. Psychopharmacologia (Berl.) 2, 22 (1961).Google Scholar
  983. Kraupp, O., H. Bernheimer, P. Heistracher, D. Papistas u. Th. Schiefthaler: Die Wirkung von Iproniazid sowie i.p. Zufuhr von Catecholaminen und ihrer O-Methylderi-vate auf die renale Ausscheidung von Metanephrin und Normetanephrin an der Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 243, 459 (1962).Google Scholar
  984. Kraupp, O., H. Stormann, H. Bernheimer u. H. Obenaus: Vorkommen und diagnostische Bedeutung von Phenolsäuren im Harn beim Phaeochromocytom. Klin. Wschr. 37, 76 (1959).PubMedGoogle Scholar
  985. Krause, D.: Der Einfluβ von Iproniazid und 1-Phenyl-2-hydrazinopropan auf die Wirkung von Hexobarbital. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 21 (1960).Google Scholar
  986. Krayer, O.: In: Symposium on Cateoholamines. Pharmacol. Rev. 11, 233 (1959).Google Scholar
  987. Krezanoski, J. Z.: Effects of iproniazid on tetrahymena pyriformis. J. pharm. Sci. 50, 421 (1961).PubMedGoogle Scholar
  988. Krishna, N., M. J. Mann, and J. H. Leopold: Manometric determination of monoamine oxidase in ocular tissues. Arch. Ophthal. 65, 338 (1961).PubMedGoogle Scholar
  989. Kroneberg, G. u. H. G. Kurbjuweit: Die Beeinflussung von experimentellem Fieber durch Reserpin und Sympathicolytica am Kaninchen. Arzneimittel-Forsch. 9, 556 (1959).Google Scholar
  990. Kroneberg, G., H. J. Schümann: Der Einfluβ von Iproniazid auf die durch Reserpin gesteigerte Sekretion des Kaninchennebennierenmarks. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 239, 29 (1960).Google Scholar
  991. Kroneberg, G., u. K. Stoepel: Zum Wirkungsmechanismus von α-Methyldopa. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 246, 11 (1963).Google Scholar
  992. Krueger, A. P., and R. F. Smith: The biological mechanisms of air ion action. I. 5-Hydroxy-tiyptamine as the endogenous mediator of positive air ion effects on the mammalian trachea. J. gen. Physiol. 43, 533 (1960).PubMedGoogle Scholar
  993. Krueger-Thiemer, E.: Chemismus der Isoniazidspaltung durch Hämin. Naturwissenschaften 42, 47 (1955).Google Scholar
  994. Kruger, S., W. C. Standeffer, and F. W. Schueler: Some effects of reserpine on normal and leukemic mice. Arch. int. Pharmacodyn. 129, 395 (1960).PubMedGoogle Scholar
  995. Kubikowski, P., and J. Wysokowski: The influence of some hypotensive drugs and diuretics on the level of catecholamines and monoamine oxidase activity in brain and in blood. Biochem. Pharmacol. 12, Suppl., 31 (1963).Google Scholar
  996. Kuntzman, R., E. Costa, G. L. Gessa, C.W. Hirsch, and B. B. Brodie: Combined use of α-methyl meta-tyrosine (MMT) and reserpine to associate norepinephrine (NE) with excitation and serotonin (5-HT) with sedation. Fed. Proc. 20, 308 (1961a).Google Scholar
  997. Kuntzman, R., E. Costa, C. R. Creveling, C. W. Hirsch, and B. B. Brodie: Blockade in vivo of dopamine β-hydroxvlase by NSD 1024 and NSD 1034, isosteres of α-methyl-m-tyramine. Fred. Proc. 21, 365 (1962a).