Skip to main content

Symposium D

Pathogenitätsfaktoren und Abwehrmechanismen bei Infektionskrankheiten

  • Conference paper
90. Kongreß

Abstract

Urogenital infections caused by Neisseria gonorrhoeae are epidemic in many parts of the world. Gonococcal infections of the female reproductive tissues, such as pelvic inflammatory disease, which may be complicated by infertility, chronic pelvic pain and ectopic pregnancy, continue to place the major burden of gonococcal infections on women and their unborn children [1]. Despite intensive efforts at controlling the spread of gonococcal infections by treating symptomatic patients and identifying and treating their sexual contacts, the incidence of gonorrhea and pelvic inflammatory disease has not declined [1]. Because of the continued prevalence of gonococcal infections in general and the tremendous cost of pelvic inflammatory disease in particular (both in monetary terms and in personal tragedy), efforts in laboratories around the world are being channelled toward the development of a safe and effective gonococcal vaccine [2]. Critical to such efforts at preventing gonococcal infections is a basic understanding of the mechanisms by which gonococci infect and damage human fallopian tubes. Immunity elicited by a vaccine, in order to be effective, must interfere with the molecular mechanisms by which gonococci interact with genital mucosa and cause disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Centers for Disease Control (1983) Gonorrhea and salpingitis among American teenagers, 1960–1981. In: CDC Surveillance Summaries (published quarterly). (Suppl 3) August 32: 25SS–30SS

    Google Scholar 

  2. McGee ZA, Melly MA, Gregg CR (1981) Role of attachment in the pathogenesis of gonococcal infections: implications for the development of a gonococcal vaccine. In: Robbins JB, Hill JC, Hanson L, Sadoff G, Zollinger W, Fraser D (eds) International Symposium on Bacterial Vaccines. B. C. Decker, Inc., New York, pp 133–139

    Google Scholar 

  3. Johnson AP, Taylor-Robinson D, McGee ZA (1977) Species specificity of attachment and damage to oviduct mucosa by Neisseria gonorrhoeae. Infect Immun 18: 833–839

    PubMed  CAS  Google Scholar 

  4. Gregg CR, Johnson AP, Taylor-Robinson D, Melly MA, McGee ZA (1981) Host species-specific damage to oviduct mucosa by Neisseria gonorrhoeae lipopolysaccharide. Infect Immun 34: 1056–1058

    PubMed  CAS  Google Scholar 

  5. Ward ME, Watt PJ, Robertson JN (1974) The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis 129: 650–659

    PubMed  CAS  Google Scholar 

  6. McGee ZA, Johnson AP, Taylor-Robinson D (1976) Human fallopian tubes in organ culture: preparation, maintenance, and quantitation of damage by pathogenic microorganisms. Infect Immun 13: 608–618

    PubMed  CAS  Google Scholar 

  7. McGee ZA, Stephens DS, Hoffman LH, Schlech III WF, Horn RG (1983) Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis 5: S708–5714

    PubMed  Google Scholar 

  8. Stephens DS, McGee ZA, Melly MA, Hoffman LH, Gregg CR (1982) Attachment of pathogenic Neisseria to human mucosal surfaces: role in pathogenesis. Infection 10: 192–195

    PubMed  CAS  Google Scholar 

  9. McGee ZA, Dourmashkin RR, Gross JG, Clark JB, Taylor-Robinson D (1977) Relationship of pili to colonial morphology among pathogenic and nonpathogenic species of Neisseria. Infect Immun 15: 594–600

    PubMed  CAS  Google Scholar 

  10. Melly MA, Gregg CR, McGee ZA (1981) Studies of toxicity of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis 143: 423–431

    PubMed  CAS  Google Scholar 

  11. McGee ZA, Johnson AP, Taylor-Robinson D (1981) Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143: 413–422

    PubMed  CAS  Google Scholar 

  12. Gregg CR, Melly MA, Hellerqvist CG, Coniglio JG, McGee ZA (1981) Toxic activity of purified lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis 143: 432–439

    PubMed  CAS  Google Scholar 

  13. Gregg CR, Melly MA, McGee ZA (1980) Gonococcal lipopolysaccharide: a toxin for human fallopian tube mucosa. Am J Obstet Gynecol 138: 981–984

    PubMed  CAS  Google Scholar 

  14. McGee ZA, Horn RG (1979) Phagocytosis of gonococci by nonprofessional phagocytic cells. In: Schlessinger D (ed) Microbiology — 1979. American Society for Microbiology, Washington, DC, pp 158–161

    Google Scholar 

  15. O’Brien JP, Goldenberg DL, Rice PA (1983) Disseminated gonococcal infection: A prospective analysis of 49 patients and a review of pathophysiology and immune mechanisms. Medicine (Baltimore) 62: 395–406

    Google Scholar 

  16. McGee ZA (1984) Gonococcal pelvic inflammatory disease. In: Holmes KK, Mardh PA, Sparling PF, Wiesner PJ (eds) Sexually transmitted diseases. McGraw-Hill Book Co., New York (in press)

    Google Scholar 

Literatur

  1. Arbuthnott JP, Freer JH, Bernheimer AW (1967) Physical states of staphylococcal a-toxin. J Bacteriol 94: 1170–1177

    PubMed  Google Scholar 

  2. Arbuthnott JP, Freer JH, Billcliffe B (1973) Lipid-induced polymerization of staphylococcal a-toxin. J Gen Microbiol 75: 309–319

    PubMed  CAS  Google Scholar 

  3. Bernheimer AW (1974) Interaction between membranes and cytolytic bacterial toxins. Biochim Biophys Acta 344: 27–50

    CAS  Google Scholar 

  4. Bhakdi S, Füssle R, Tranum-Jensen J (1981) Staphylococcal a-toxin: oligomerisation of hydrophilic monomers to form amphilic hexamers induced through contact with deoxycholate detergent micelles. Proc Natl Acad Sci USA 78: 5475–5479

    PubMed  CAS  Google Scholar 

  5. Bhakdi S, Füssle R, Utermann G, Tranum-Jensen J (1983) Binding and partial inactivation of S.aureus a-toxin by plasma low density lipoprotein. J Biol Chem 258: 5899–5904

    PubMed  CAS  Google Scholar 

  6. Bhakdi S, Muhly M, Füssle R (1984) Membrane damage by S.aureus a-toxin: correlation between toxin-binding and hemolytic activity. Infect Immun (submitted)

    Google Scholar 

  7. Bhakdi S, Tranum-Jensen J (1978) Molecular nature of the complement lesion. Proc Natl Acad Sci USA 75: 5655–5659

    PubMed  CAS  Google Scholar 

  8. Bhakdi S, Tranum-Jensen J (1983) Membrane damage by complement. Biochim Biophys Acta 737: 343–372

    PubMed  CAS  Google Scholar 

  9. Freer JH, Arbuthnott JP, Bernheimer AW (1968) Interaction of staphylococcal a-toxin with artificial and natural membranes. J Bacteriol 95: 1153–1168

    PubMed  CAS  Google Scholar 

  10. Freer JH, Arbuthnott JP, Billcliffe B (1973) Effects of staphylococcal a-toxin on the structure of erythrocyte membranes: a biochemical and freeze-etching study. J Gen Microbiol 75:321–332

    PubMed  CAS  Google Scholar 

  11. Füssle R, Bhakdi S, Sziegoleit A, Tranum-Jensen J, Kranz T, Wellensiek HJ (1981) On the mechanism of membrane damage by S. aureus a-toxin. J Cell Biol 91: 83–94

    PubMed  Google Scholar 

  12. McCartney C, Arbuthnott JP (1978) Mode of action of membrane-damaging toxins produced by staphylococci. In: Jeljaszewicz J, Wadström T (eds) Bacterial toxins and cell membranes. Academic Press, New York, pp 89–122

    Google Scholar 

  13. Seeger W, Bauer M, Bhakdi S (1984) Staphylococcal a-toxin elicits hypertension in isolated rabbit lungs: evidence for thromboxane formation and the role of extracellular calcium. J Clin Invest (in press)

    Google Scholar 

  14. Suttorp N, Seeger W, Bhakdi S, Dewein E, Roka L (1984) Staphylococcal a-toxin stimulates synthesis of prostacyclin by cultured endothelial cells from pig pulmonary arteries: toxin pores may serve as a nonphysiological calcium bypass. Am J Physiol (submitted)

    Google Scholar 

  15. Thelestam M, Möllby R, Wadström T (1973) Effects of staphylococcal alpha-, beta-, delta-, gamma-hemolysins on human diploid fibroblasts and Hela cells. Infect Immun 8: 938–946

    PubMed  CAS  Google Scholar 

  16. Thelestam M, Möllby R (1975) Sensitive assay for detection of toxin-induced damage to the cytoplasmic membrane of human diploid fibroblasts. Infect Immun 12: 225–232

    PubMed  CAS  Google Scholar 

  17. Tranum-Jensen J, Bhakdi S (1983) Freeze-fracture ultrastructural analyses of the complement lesion. J Cell Biol 97: 618–626

    PubMed  CAS  Google Scholar 

  18. Alouf JE (1976) Cell membranes and cytolytic bacterial toxins. Receptors and recognition, 1, series B. Chapman and Hall, London New York, p 221

    Google Scholar 

  19. Arbuthnott JP (1982) Bacterial cytolysins (membrane damaging toxins). Molecular action of toxins viruses. Elsevier Biomedical Press, p 108

    Google Scholar 

  20. Bach MK (1984) Prospects for the inhibition of leukotriene synthesis. Biochem Pharmacol 33: 515

    PubMed  CAS  Google Scholar 

  21. Beachy EH (1984) Bacterial adherence. Receptors and recognition, 6, series B. Chapman and Hall, London New York

    Google Scholar 

  22. Berger H, Hacker J, Juarez A, Hughes C, Goebel W (1982) Cloning of the chromosomal determinants encoding hemolysin production and mannose-resistant hemagglutination in escherichia coli. Bacteriol 152: 1241

    CAS  Google Scholar 

  23. Björgstein B, Wadström I (1982) Interaction of E. coli different fimbrial and polymorphonuclear leukocytes. Infect Immun 38: 298

    Google Scholar 

  24. Blumenstock E, Jann K (1982) Adhesion of piliated escherichia coli strains to phagocytosis differences between bacteria with mannose-sensitive pili and those with mannose-resistant pili. Infect Immun 35: 264

    PubMed  CAS  Google Scholar 

  25. Bremm KD, Brom J, König W, Spur B, Crea A, Bhakdi S, Lutz F, Fehrenbach FJ (1983) Generation of leukotrienes and lipoxygenasefactors from human polymorphonuclear granulocytes during bacterial phagocytosis and interaction with bacterial exotoxins. Zentralbl Bakteriol [Orig A] 254: 500

    CAS  Google Scholar 

  26. Bremm KD, Brom HJ, Alouf JE, König W, Spur B, Crea A, Peters W (1984) Generation of leukotrienes from human granulocytes by alveolysin from Bacillus alvei. Infect Immun (in press)

    Google Scholar 

  27. Bremm KD, König W, Spur B, Crea A, Galanos C (1984) Generation of slow reacting substance (leukotrienes) by endotoxin and lipid A from human polymorphonuclear granulocytes. Immunology (in press)

    Google Scholar 

  28. Brom J, Raulf M, Stüning M, Spur B, Crea A, Bremm KD, König W (1984) Subcellular localization of enzymes involved in leukotriene formation within human polymorphonuclear granulocytes. Immunology 51: 571

    PubMed  CAS  Google Scholar 

  29. Bult H, Herman A (1983) Inflammatory mediators released by complement-derived peptides. Agents Actions 13: 405

    PubMed  CAS  Google Scholar 

  30. Camp R, Jones RR, Brain S, Woollard P, Greaves M (1984) Production of intraepidermal microabscesses by topical application of leukotriene B4. J Invest Dermatol 82: 202

    PubMed  CAS  Google Scholar 

  31. Dvorak AM, Galli SJ, Schulman ES, Lichtenstein LM, Dvorak HF (1983) Basophil and mast cell degranulation: ultrastructural analysis of mechanism of mediator release. Fed Proc 42:2510

    PubMed  CAS  Google Scholar 

  32. Elsbach P, Weiss J (1983) Reevaluation of the roles of the O2-dependent and 02-independent microbicidal systems of phagocytosis. Rev Infect Dis 5:843

    PubMed  CAS  Google Scholar 

  33. Evans DJ Jr, Evans DG (1983) Classification of pathogenic escherichia coli according to serotype and the production of virulence factors, with special reference to colonization-factor antigens. Rev Infect Dis 5: 692

    Google Scholar 

  34. Freer JH, Arbuthnott JP (1983) Toxins of staphylococcus aureus. Pharmacol Ther [B] 19: 55

    CAS  Google Scholar 

  35. Freter R, Jones GW (1983) Models for studying the role of bacterial attachment in virulence and pathogenesis. Rev Infect Dis 5: 647

    CAS  Google Scholar 

  36. Gaastra W, de Graaf FK (1982) Host-specific fimbrial adhesins of nonivasive enterotoxigenic escherichial coli strains. Microbiol Rev 46: 129

    PubMed  CAS  Google Scholar 

  37. Goebel W, Hedgpeth J (1982) Cloning and functional characterization of the plasmidencoded hemolysin determinant of escherichia coli. J Bacteriol 151: 1290

    PubMed  CAS  Google Scholar 

  38. Hammarström S (1983) Leukotrienes. Annu Rev Biochem 355

    Google Scholar 

  39. Hertz F, Cloarec A (1983) Pharmacology of free radicals; recent views on their relation to inflammatory mechanisms. Life Sci 34: 713

    Google Scholar 

  40. Hirayama T, Kato I (1983) A rapid stimulation of phosphatidylinositol metabolism in rabbit leukocytes by pseudomonal leukocidin. FEBS Lett 157: 46

    PubMed  CAS  Google Scholar 

  41. Jones GW, Isaacson RE (1983) Proteinaceous bacterial adhesins and their receptors. CRC Crit Rev Microbiol 10: 229

    CAS  Google Scholar 

  42. König W, Czarnetzki BM, Lichtenstein LM (1976) Eosinophil chemotactic factor (ECF). II. Release during phagocytosis of human polymorphonuclear leukocytes. J Immunol 117: 235

    PubMed  Google Scholar 

  43. König W (1978) Struktur and Funktion des eosinophilen Leukozyten. Immun Infekt 6:97

    PubMed  Google Scholar 

  44. König W, Theobald K, Möller G, Pfeiffer P, Bohn A (1981) The IgE receptor. In: Ring J, Burg G (eds) New trends in allergy. Springer, Berlin Heidelberg New York, p 21

    Google Scholar 

  45. König W, Pfeiffer P, Szperalski B, Bohn A (1981) Membrane biochemical events in mast cell and basophil activation and secretion. Behring-Inst Mitt 68:30

    Google Scholar 

  46. König W, Kunau HW, Borgeat P (1982) Induction and comparison of the eosinophil chemotactic factor with endogenous hydroxy-eicosatetraenoic acids: its inhibition by arachidonic acid analogs. In: Samuelsson B, Paoletti R (eds) Leukotriene and other lipoxygenase products. Raven Press, New York, p 301

    Google Scholar 

  47. König W, Bremm KD (1983) In: Keller HU, Till GW (eds) On the biological role of lipid chemotactic factors. “First international conference on leukocyte locomotion and chemotaxis”. Agents Actions 12: 167

    PubMed  Google Scholar 

  48. König W, Bohn A, Bremm KD, Brom J, Theobald K, Spur B, Crea A (1983) Die Rolle der Mastzelle bei allergischen and entzündlichen Erkrankungen. Prax Pneumol 4: 127

    Google Scholar 

  49. Mett H, Kloetzlen L, Bosbeck K (1983) Properties of Pili from Escherichia coli SS 142 mediating mannose-resistent adhesion to mammalian cells. J Bacteriol (in press)

    Google Scholar 

  50. Norn S. Stahl Skov P, Jensen C, Bog-Hansen TC (1984) In: Snashall PD (ed) Lectin-mediated reactions — a new mechanism in bronchial hyper-responsiveness. Blackwell Sci. Publ. (in press)

    Google Scholar 

  51. Ohmann L, Hed J, Stendahl O (1982) Interaction between human polymorphonuclear leukocytes and two different strains of type I fibriae-bearing escherichia coli. J Infect Dis 146: 751

    Google Scholar 

  52. Powell WS (1984) Properties of leukotriene B4 20-Hydroxylase from polymorphonuclear leukocytes. J Biol Chem 259: 3082

    PubMed  CAS  Google Scholar 

  53. Siegel JP, Remington JS (1982) Effect of antimicrobial agents on chemiluminescence of human polymorphonuclear leukocytes in response to phagocytosis. J Antimicrob Chemother 10: 505

    PubMed  CAS  Google Scholar 

  54. Silverblatt FJ, Dreyer JS, Schauer S (1979) Effect of pili on susceptibility of escherichia coli to phagocytosis. Infect Immun 24: 218

    PubMed  CAS  Google Scholar 

  55. Sparling PF (1983) Bacterial virulence and pathogenesis: an overview. Rev Infect Dis 5: 637

    CAS  Google Scholar 

  56. Spitznagel JK (1983) Microbial interactions with neutrophils. Rev Infect Dis 5: 806

    CAS  Google Scholar 

  57. Spratt BG (1983) Penicillin-binding proteins and the future of ß-lactam antibiotics. J Gen Microbiol 129: 1247

    PubMed  CAS  Google Scholar 

  58. Svenson SB, Hultberg H, Kallenius J, Korhonen TK, Mollby R, Winberg J (1983) p-fimbrial of pyelonephretogenic E. coli: Identification and chemical characterization of receptors. Infection 11:73

    PubMed  Google Scholar 

References

  • Aho D, Ahvonen P, Lassus A, Sievers D, Tiilikainen A (1976) Yersinia arthritis and related diseases: Clinical and immunogenetic implications. In: Dumonde DC (ed) Infection and immunology in the rheumatic diseases. Blackwell Scient. Publ., Oxford, p 341

    Google Scholar 

  • Blackwell J, Freeman J, Bradley D (1980) Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature 283: 72–74

    PubMed  CAS  Google Scholar 

  • Bradley DJ (1974) Genetic control of natural resistance to Leishmania donovani. Nature 250: 353–354

    PubMed  CAS  Google Scholar 

  • Bradley DJ (1977) Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin Exp Immunol 30: 130–140

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Taylor BA, Blackwell J, Evans EP, Freeman J (1979) Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin Exp Immunol 37: 7–14

    PubMed  CAS  Google Scholar 

  • Brown IN, Glynn AA, Plant JE (1982) Inbred mouse strain resistance to Mycobacterium lepraemurium follows the Ity/Lsh pattern. Immunology 47: 149–156

    PubMed  CAS  Google Scholar 

  • Collins FM, Mackaness GB (1968) Delayed hypersensitivity and Arthus reactivity in relation to host resistance in salmonellainfected mice. J Immunol 101:830–845

    PubMed  CAS  Google Scholar 

  • Festing MW (1983) The use of genetically defined laboratory animals in the study of infection. In: Keusch G, Wadstrom T (eds) Experimental bacterial and parasitic infections. Elsevier Biomedical, New York, pp 17–23

    Google Scholar 

  • Gowen JW (1960) Genetic effects in non-specific resistance to infectious disease. Bacteriol Rev 24: 192–200

    PubMed  CAS  Google Scholar 

  • Gros P, Skamene E, Forget A (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127: 2417–2421

    PubMed  CAS  Google Scholar 

  • Hormaeche CE (1980) The in vivo division and death rates of Salmonella typhimurium in the spleens of naturally resistant and susceptible mice, measured by the superinfecting phage techniques of Meynell. Immunology 41: 973–979

    PubMed  CAS  Google Scholar 

  • Lissner CR, Swanson RN, O’Brien AD (1983) Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol 131: 3006–3013

    PubMed  CAS  Google Scholar 

  • O’Brien AD, Rosenstreich DL, Taylor BA (1980) Control of natural resistance to Salmonella typhimurium and Leishmania donovani in mice by closely linked but distinct genetic loci. Nature 287: 440–442

    PubMed  Google Scholar 

  • Plant JE (1983) Relevance of the route of infection in the mouse model for Salmonella typhimurium infection. In: Keusch, G, Wadstrom T (eds) Experimental bacterial and parasitic infections. Elsevier Biomedical, New York, pp 39–49

    Google Scholar 

  • Plant JE, Blackwell JM, O’Brien AD, Bradley DJ, Glynn AA (1982) Are the Lsh and Ity disease resistance genes at one locus on chromosome 1. Nature 297: 510–511

    PubMed  CAS  Google Scholar 

  • Plant JE, Glynn AA (1974) Natural resistance to Salmonella infection, delayed hypersensitivtiy and Ir genes in different strains of mice. Nature 248: 345–347

    PubMed  CAS  Google Scholar 

  • Plant JE, Glynn AA (1976) Genetics of resistance to infection with Salmonella typhimurium in mice. J Infect Dis 133: 72–78

    PubMed  CAS  Google Scholar 

  • Plant JE, Glynn AA (1979) Locating salmonella resistance gene on mouse Chromosome 1. Clin Exp Immunol 37: 1–6

    PubMed  CAS  Google Scholar 

  • Plant JE, Glynn AA (1982) Genetic control of resistance to Salmonella typhimurium infection in high and low antibody responder mice. Clin Exp Immunol 50: 283–290

    PubMed  CAS  Google Scholar 

  • Potter M, O’Brien AD, Skamene E, Gros P, Forget A, Kongshavn PAL, Wax JS (1983) A BALB/c congenic strain of mice that carries a genetic locus (Ity`) controlling resistance to intracellular parasites. Infect Immun 40: 1234–1235

    PubMed  CAS  Google Scholar 

  • Skamene E, Gros P, Forget A, Kongshavn PAL, St Charles C, Taylor BA (1982) Genetic regulation of resistance to intracellular pathogens. Nature 297: 506–509

    PubMed  CAS  Google Scholar 

  • Swanson RN, O’Brien AD (1983) Genetic control of the innate resistance of mice to Salmonella typhimurium: Ity gene is expressed in vivo by 24 hours after infection. J Immunol 131: 3014–3020

    PubMed  CAS  Google Scholar 

  • Taylor BA, O’Brien AD (1982) Position on mouse chromosome 1 of a gene that controls resistance to Salmonella typhimurium. Infect Immun 36: 1257–1260

    PubMed  CAS  Google Scholar 

  • de Vries RRP, van Eden W, van Rood JJ (1981) HLA-linked control of the course of M. leprae infections. Lepr Rev (Suppl 1) 52: 109–119

    Google Scholar 

  • Webster LT (1937) Inheritance of resistance of mice to enteric bacterial and neurotropic viral infections. J Exp Med 65: 261–286

    PubMed  CAS  Google Scholar 

Literatur

  • Clas F, Loss M (1980) Killing of the S and Re forms of Salmonella typhimurium via the classical pathway of complement activation in guinea-pig and human serum. Immunology 40: 547–556

    PubMed  CAS  Google Scholar 

  • Casciato DA et al. (1979) Susceptibility of isolates of bacteroides to bactericidal capacity of normal human serum. J Infect Dis 140: 109–113

    PubMed  CAS  Google Scholar 

  • Eisenstein BI et al. (1977) Penicillin sensitivity and serum resistance are independent attributes of strains of Neisseria gonorrhoeae causing disseminated gonococcal infections. Infect Immun 15: 834–841

    PubMed  CAS  Google Scholar 

  • Elgefors B, Oiling S (1978) The significance of serum-sensitive bacilli in gramnegative bacteremia. Scand J Infect Dis 10: 203–207 — Feingold DS et al. (1968a) Locus of the action of serum and the role of lysozyme in the serum lactericidal reaction. J Bacteriol 96: 2118–2126

    Google Scholar 

  • Feingold DS et al. (1968b) Locus of the lethal event in the serum bactericidal reaction. J Bacteriol 96: 2127–2131

    CAS  Google Scholar 

  • Feingold DS (1969) The serum bactericidal reaction. IV. Phenotype conversion of Escherichia colt from serum resistance to serum sensitivity by diphenylamine. J Infect Dis 120: 437–444

    PubMed  CAS  Google Scholar 

  • Fierer J et al. (1972) A plaque assay on agar for detection of gramnegative bacilli sensitive to complement. J Immunol 109:1156–1158

    PubMed  CAS  Google Scholar 

  • Glynn AA, Howard CJ (1970) The sensitivity to complement of strains of Escherichia coli related to their K antigens. Immunology 18: 331–346

    PubMed  CAS  Google Scholar 

  • Hildebrandt JF et al. (1978) Neisseria gonorrhoeae acquire a new principal outer-membrane protein when transformed to resistance to serum bactericidal activity. Infect Immun 20: 267–273

    PubMed  CAS  Google Scholar 

  • Hirsch RL (1982) The complement system: Its importance in the host response to viral infection. Microbiol Rev 46:71–85

    PubMed  CAS  Google Scholar 

  • Howard CJ, Glynn AA (1971) The virulence for mice of strains of Escherichia coli related to the effects of K antigens on their resistance to phagocytosis and killing by complement Immunology 20:767–777

    CAS  Google Scholar 

  • Joiner KA et al. (1983) Studies on the mechanism of bacterial resistance to complement-mediated killing. VI. IgG increases the bactericidal efficiency of C5b-9 for E. coli 0111B4 by acting at a step before C5 cleavage. J Immunol 131:2570–2575

    CAS  Google Scholar 

  • Loos M et al. (1978) Antibody-independent interaction of the first component of complement with gram-negative bacteria. Infect Immun 22: 5–9

    PubMed  CAS  Google Scholar 

  • McCabe WR et al. (1978) Escherichia cot in bacteremia: K and O antigens and serum sensitivity of strains from adults and neonates. J Infect Dis 138: 33–41

    PubMed  CAS  Google Scholar 

  • Nelson BW, Roantree RJ (1967) Analyses of lipopolysaccharides extracted from penicillinresistant serum-sensitive Salmonella mutants. J Gen Microbiol 48: 179–188

    PubMed  CAS  Google Scholar 

  • Ogata T, Levine RP (1980) Characterization of complement resistance in Escherichia colt conferred by the antibiotic resistance plasmid R 100. J Immunol 125: 1494–1498

    PubMed  CAS  Google Scholar 

  • Roantree RJ, Rantz LA (1960) A study of the relationship of the normal bactericidal activity of human serum to bacterial infection. J Clin Invest 35: 82–88

    Google Scholar 

  • Rottem S, Leive L (1977) Effect of variations in lipopolysaccharide on the fluidity of the outer membrane of Escherichia coli. J Biol Chem 252:2077–2081

    PubMed  CAS  Google Scholar 

  • Simberkoff MS et al. (1976) Host resistance to Serratia marcescens infection: serum bactericidal activity and phagocytosis by normal blood leukocytes. J Lab Clin Med 87: 206–217

    PubMed  CAS  Google Scholar 

  • Stevens P et al. (1978) Restricted complement activation by E. coli with the KI capsular serotype: a possible role in pathogenicity. J Immunol 121:2174–2180

    CAS  Google Scholar 

  • Taylor PW (1976) Immunochemical investigations on lipopolysaccharides and acidic polysaccharides from serum-sensitive and serum-resistant strains of E. coli isolated from urinary tract infections. J Med Microbiol 9: 405–421

    CAS  Google Scholar 

  • Taylor PW (1983) Bactericidal and bacteriolytic activity of serum against gram-negative bacteria. Microb Rev 47: 46–83

    CAS  Google Scholar 

  • Taylor PW, Kroll HP (1983) Killing of an encapsulated strain of E. coli by human serum. Infect Immun 39: 122–131

    CAS  Google Scholar 

  • Timmis KN et al. (1981) Serum resistance in E. coli. In: Levy SB et al. (eds) Molecular biology, pathogenicity and ecology of bacterial plusmids, pp 133–144

    Google Scholar 

  • Vosti KL, Randall E (1970) Sensitivity of serologically classified strains of E. coli of human origin to the serum bactericidal system. Am J Med Sci 259: 114–119

    CAS  Google Scholar 

  • Wardlaw AC (1963) The complement dependent bacteriolytic activity of normal human serum. II. Cell wall composition of sensitive and resistant strains. Can J Microbiol 9:41–52

    CAS  Google Scholar 

  • Wright SD, Levine RP (1981a) How complement kills E. coli. I. Location of the lethal lesion. J Immunol 127: 1146–1151

    CAS  Google Scholar 

  • Wright SD, Levine RP (1981b) How complement kills E. coli. II. The apparent two-hit nature of the lethal event. J Immunol 127: 1152–1156

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robinson, E.N. et al. (1984). Symposium D. In: 90. Kongreß. Verhandlungen der Deutschen Gesellschaft für Innere Medizin, vol 90. J.F. Bergmann-Verlag, Munich. https://doi.org/10.1007/978-3-642-85457-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85457-6_13

  • Publisher Name: J.F. Bergmann-Verlag, Munich

  • Print ISBN: 978-3-8070-0342-9

  • Online ISBN: 978-3-642-85457-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics