Conference paper


Bei den meßtechnischen Limitationen von Herzschrittmachern können aus der Gruppe der respiratorischen Parameter derzeit nur die Atemfrequenz und das Atemzugvolumen erfaßt werden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian ED (1933) Afferent impulses in the vagus and their effect on respiration. J Physiol (Lond.) 79:332Google Scholar
  2. Alt E, Heinz M, Hirgstetter C, Emslander P, Daum S, Blömer H (1987) Control of pacemaker rate by impedance-based respiratory minute ventilation. Chest 92: 247PubMedCrossRefGoogle Scholar
  3. Aquilina M, Liverani L, Giulianini G, Musi P (1988) Data processing of transthoracic impedance signal (TIS) to optimize its relationship with physical activity in respiratory dependent pacemakers. PACE 11:809Google Scholar
  4. Bartels H (1975) Gaswechsel (Atmung) In: Keidel WD (Hrsg) Kurzgefaßtes Lehrbuch der Physiologie. Thieme, StuttgartGoogle Scholar
  5. Bouckaert JJ, Dautrebande L, Heymans C (1931) Sinus caroticus and respiratory reflexes. Influence of CO2, hydrogen ion concentration and anoxaemia. J Physiol (Lond.)71, v–viGoogle Scholar
  6. Breuer J (1868) Die Selbststeuerung der Atmung durch den Nervus Vagus. Sitzber Math Naturw Cl (Wien) 57(2):672Google Scholar
  7. Camm AJ, Garratt CJ (1988) Rate-adaptive pacing guided by minute ventilation. In: Santini M, Pistolese M, Alliegro A (eds) Progress in Clinical Pacing. Excerpta Medica, Amsterdam, Hong Kong, Manila, Princeton, Sydney, Tokyo, p107Google Scholar
  8. Casaburi R, Whipp BJ, Wasserman K (1977) Ventilatory and gas exchange dynamics in response to sinusoidal work. J Appl Physiol 42: 300PubMedGoogle Scholar
  9. Comroe JH (1939) The location and function of the chemoreceptors of the aorta. Am J Physiol 127(1):179Google Scholar
  10. Dejour P (1964) Control in respiration in muscular exercise. In: Fenn WO, Rahn H (eds) Handbook of Physiology. Respiration 1. Washinghton, DC, p631Google Scholar
  11. Eldrigde FL, Milhorn DE, Waldrop TG (1981) Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211:844CrossRefGoogle Scholar
  12. Fee JA, Schultz K, Fischer S, Abi-Samra F, Batey R, Benge W, Camm J, Kay N, Lau CP, Lin H, Maloney JD, Mond H, Redd R, Sweet RL, Shehane R (1988) Preliminary clinical results of the Meta MV rate responsive pacemaker. PACE 11:810Google Scholar
  13. Funke HD (1975) Ein Herzschrittmacher mit belastungsabhängiger Frequenzregulation. Biomed Technik 20:225CrossRefGoogle Scholar
  14. Galli R, Aquilina M, Pariapiano M, Coli G, Laporta P (1988) A patient simulator for „in vitro“ analysis of respiratory dependent pacemakers. PACE 11:809Google Scholar
  15. Hansen JE (1886) Respiratory abnormalities: exercise evaluation of the dyspnoic patient. In: Leff AR (ed) Cardiopulmonary exercise testing. Grune & Stratton, Orlando, p69Google Scholar
  16. Heymans C, Bouckaert JJ, Dautrebande L (1930). Role reflexogene respiratoire des zones vaso-sensibles cardio-aortique et sino-carotidiennes: Ion hydrogene, CO2, sinus-carotidiens et reflexes respiratoires. CR Soc Biol (Paris) 105:881Google Scholar
  17. Hornbein TF, Sorensen SC, Parks CR (1969). Role of muscle spindles in lower extremities in breathing during bicycle exercise. J Appl Physiol 27:476PubMedGoogle Scholar
  18. Ionescu VL (1980). An „on demand pacemaker“ responsive to respiration rate. PACE 3:375Google Scholar
  19. Koepchen HP (1975). Atmungsregulation. In: Gauer OH, Kramer K, Jung R (Hrsg) Physiologie des Menschen (Bd.6): Atmung. Urban und Schwarzenberg, München, Berlin, WienGoogle Scholar
  20. Lampadius MS (1985). Event-triggered rheographic ventilation sensor for pacemaker rate control. In: Gomez FP (ed) Cardiac Pacing. Electrophysiology. Tachyarrhythmias. Editorial Grouz, Madrid, p817Google Scholar
  21. Lau C, Leigh-Jones M, Kingwell S, Ward D, Camm J (1988a). Comparative evaluation of two respiratory sensing rate responsive pacemakers. Pace 11:487Google Scholar
  22. Lau C, Butrous G, Ward D, Camm J (1988b). A rational assessment of rate responsive pacemakers. experience on six different units. Pace 11:488Google Scholar
  23. Leusen IR (1954). Chemosensitivity of the respiratory center. Influence of CO2 in the cerebral ventricles on respiration. Am J Physiol 176:39PubMedGoogle Scholar
  24. Linnarsson D (1974). Dynamics of pulmonary gas exchange at start and end of exercise. Acta Physiol Scand 415(Suppl):1Google Scholar
  25. Mitchell RA, Loeschke HH, Severinghaus JW, Richardson BW, Massion WH (1963). Regions of respiratory chemosensitivity on the surface of the medulla. Ann NY Acad Sci 109:661CrossRefGoogle Scholar
  26. Pioger G, Darwiche H, Vai F, Plicci G (1988). A clinical evaluation of accuracy of respiratory rate detection in multibiorate MB1 pacemaker. PACE 11:809Google Scholar
  27. Pitts RF, Magoun HW, Ranson SW (1939). Localization of the medullary respiratory centers in the cat. Am J Physiol 126:673Google Scholar
  28. Plicci G, Aquilina N, Rognoni G, Capucci A (1988). Bipolar and tripolar electrode configurations for an intravascular respiratory impedance measurement. PACE 11:809Google Scholar
  29. Rossi P, Plicchi G, Canducci G, Rognoni G, Aina F (1983). Respiratory rate as a determinant of optimal pacing rate. PACE 6 (Part II):502PubMedCrossRefGoogle Scholar
  30. Rossi P, Aina F, Rognoni G, Occhetta E, Plicchi G, Prando MD (1984). Increasing cardiac rate by tracking the respiratory rate. PACE 7 (Part II): 1246PubMedCrossRefGoogle Scholar
  31. Rossi P, Rognoni G, Occhetta E, Aina F, Prando MD, Plicchi G, Minella H (1985). Respiration — dependent ventricular pacing compared with fixed ventricular and atrial-ventricular synchronous pacing: aerobic and hemodynamic variables. JACC 6:646PubMedGoogle Scholar
  32. Rossi P, Prando MD, Magnani A, Aina F, Rognoni G, Occhetta E (1988). Physiological sensitivity of respiratory-dependent cardiac pacing: four year follow up. PACE 11:1267PubMedCrossRefGoogle Scholar
  33. Simmons T, Maloney J, Abi-Samra, H Valenta H, Napholtz T, Castle L, Morant V (1986). Exercise — responsive intravascular impedance changes as a rate controller for cardiac pacing. PACE 9:285Google Scholar
  34. Thews G (1985). Lungenatmung. In: Schmidt RF, Thews G. (Hrsg) Physiologie des Menschen. Springer, Berlin Heidelberg New York Tokyo, S 500.Google Scholar
  35. Tibes U (1977). Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Circ Res 41:173Google Scholar
  36. Wasserman K, Whipp BJ, Castagna J (1974). Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J Appl Physiol 36:457PubMedGoogle Scholar
  37. Wasserman K, Whipp BJ (1975). Exercise physiology in health and disease. Am Rev Resp Dis 112:219PubMedGoogle Scholar
  38. Weissman ML, Wasserman K, Huntsman DJ, Whipp BJ (1979). Ventilation and gas exchange during phasic hindlimb exercise in the dog. J Appl Physiol 46:878PubMedGoogle Scholar
  39. Whipp BJ, Wasserman K (1980). Carotid bodies and ventilatory control dynamics in man. Fed Proc 39:2628Google Scholar
  40. Whipp BJ (1981). The control of exercise hyperpnea. In: Hornbein H (ed)The regulation of breathing. Dekker, New York, p1069Google Scholar
  41. Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K (1982). Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol 52:1506PubMedGoogle Scholar
  42. Whipp BJ (1986a). Exercise bioenergetics and gas exchange. In: Leff AR (ed) Cardiopulmonary exercise testing. Grune & Stratton, Orlando, p1Google Scholar
  43. Whipp BJ, Ward SA (1986b). The normal respiratory response in exercise. In: Leff AR (ed) Cardiopulmonary exercise testing. Grune & Stratton, Orlando, p45Google Scholar
  44. Young IH, Woolcock AJ (1978). Changes in arterial blood gas tensions during unsteady-state exercise. J Appl Physiol: Respirat Environ Exercise Physiol 44(1):93Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1990

Authors and Affiliations

There are no affiliations available

Personalised recommendations