Skip to main content

Milk Protein and Enteral and Parenteral Feeding in Disease

  • Chapter
Book cover Milk Proteins

Abstract

The incidence of nutritional deficiencies in hospitalized patients is often high [20, 21, 62, 90] but the indications for instituting nutritional support are both controversial and difficult to define. In general, patients requiring nutrition support fall into three groups. The first group comprises patients with preexisting weight loss, a low plasma albumin level, muscle wasting, and peripheral edema. Patients in the second group present with no overt malnutrition but have a dietary history of reduced intake for 2–4 weeks preceding admission. Finally, there are patients with normal nutritional status but whose underlying pathology results in malnutrition if nutritional support is withheld. These aspects are discussed in detail elsewhere [115].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison JM, Matthews DM, Burston D (1974) Competition between carnosine and other peptides for transport by hamster jeunum in vitro. Clin Sci Mol Med 46: 707–714

    PubMed  CAS  Google Scholar 

  2. Addison JM, Burston D, Payne JW, Wilkinson S, Matthews DM (1975) Evidence for active transport of tripeptides by hamster jejunum in vitro. Clin Sci Mol Med 49: 305–312

    PubMed  CAS  Google Scholar 

  3. Addison JM, Burston D, Dalrymple JA, Matthews DM, Payne JW, Sleisinger MH, Wilkinson S (1975) A common mechanism for transport of di-and tripeptides by hamster jejunum in vitro. Clin Sci Mol Med 49: 313–322

    PubMed  CAS  Google Scholar 

  4. Adibi SA (1969) The influence of molecular structure of neutral amino acids on their absorption in the jejunum and ileum of human intestine in vivo. Gastroenterology 56: 903–913

    PubMed  CAS  Google Scholar 

  5. Adibi SA (1970) Leucine absorption rate and net movements of sodium and water in human jejunum. J Appl Physiol 28: 753–757

    PubMed  CAS  Google Scholar 

  6. Adibi SA (1971) Intestinal transport of dipeptides in man: Relative importance of hydrolysis and intact absorption. J Clin Invest 50: 2266–2275

    PubMed  CAS  Google Scholar 

  7. Adibi SA, Gray SJ (1967) Intestinal absorption of essential amino acids in man. Gastroenterology 52: 837–845

    PubMed  CAS  Google Scholar 

  8. Adibi SA, Johns BA (1984) Partial substitution of amino acids of parenteral solutions with tripeptides: effects on parameters of protein nutrition in baboons. Metabolism 33: 420–424

    PubMed  CAS  Google Scholar 

  9. Adibi SA, Mercer DW (1973) Protein digestion in human intestine as reflected in human mucosal and plasma amino acid concentrations after meals. J Clin Invest 52: 1586–1594

    PubMed  CAS  Google Scholar 

  10. Adibi SA, Soleimanpur MR (1974) Functional characterisation of the dipeptide transport system in human jejunum. J Clin Invest 53: 1368–1374

    PubMed  CAS  Google Scholar 

  11. Adibi SA, Morse EL (1977) The number of glycine residues which limits intact absorption of glycine oligopeptides in human jejunum. J Clin Invest 60: 1008–1016

    PubMed  CAS  Google Scholar 

  12. Adibi SA, Morse EL (1982) Enrichment of glycine pool in plasma and tissues by glycine, di-, tri-, and tetraglycine. Am J Physiol 243: 413–417

    Google Scholar 

  13. Adibi SA, Gray SJ, Menden E (1967) The kinetics of amino acid absorption and alteration of plasma composition of free amino acids after intestinal perfusion of amino acid mixtures. Am J Clin Nutr 20: 24–33

    PubMed  CAS  Google Scholar 

  14. Adibi SA, Morse EL, Masilamani SS, Amin PF (1975) Triglycine absorption in human intestine: Evidence for a common carrier for dipeptide and tripeptide transport. J Clin Invest 56: 1355–1363

    PubMed  CAS  Google Scholar 

  15. Agar WT, Hird EJ, Sidhu GS (1954) The uptake of amino acids by the intestine. Biochim Biophys Acta 14: 80–84

    PubMed  CAS  Google Scholar 

  16. Anderson DM, Ash RW (1971) The effect of ligating the pancreatic duct on digestion in the pig. Proc Nutr Soc 30: 34–35

    Google Scholar 

  17. Asatoor AM, Bandoh JK, Lant AF, Milne MD, Navab F (1970) Intestinal absorption of carnosine and its constituent amino acids in man. Gut 11: 250–254

    PubMed  CAS  Google Scholar 

  18. Asatoor AM, Cheng B, Edwards KDG, Lant AF, Matthews DM, Milne MD, Navab F, Richards AJ (1970) Intestinal absorption of two dipeptides in Hartnup disease. Gut 11: 380–387

    PubMed  CAS  Google Scholar 

  19. Asatoor AM, Harrison BDW, Milne MD, Prosser DI (1972) Intestinal absorption of an arginine-containing peptide in cystinuria. Gut 13: 95–98

    PubMed  CAS  Google Scholar 

  20. Bistrian BR Balckburn GL, Hallowell E, Heddle R (1974) Protein status of general surgical patients. J Am Med Assoc 230: 858–860

    CAS  Google Scholar 

  21. Bistrian BR, Blackburn GL, Vitale J, Cochran D, Naylor J (1976) Prevalence of malnutrition in general medical patients. J Am Med Assoc 235: 1567–1570

    CAS  Google Scholar 

  22. Borgstrom B, Dahlqvist A, Lundh G, Sjovall J (1957) Studies of intestinal digestion and absorption in the human. J Clin Invest 36: 1521–1536

    PubMed  CAS  Google Scholar 

  23. Brunschwig A, Clark DE, Corbin N (1942) Postoperative nitrogen loss and studies on parenteral nitrogen nutrition by means of casein digest. Ann Surg 115: 1091–1105

    PubMed  CAS  Google Scholar 

  24. Burston D, Taylor E, Matthews DM (1979) Intestinal handling of two tetra-peptides by rodent small intestine. Biochim Biophys Acta 553: 175–178

    PubMed  CAS  Google Scholar 

  25. Burston D, Wapnir RA, Taylor E, Matthews DM (1982) Uptake of L-valyl-L-valine and glycyl-sarcosine by hamster jejunum in vitro. Clin Sci 62: 617–626

    PubMed  CAS  Google Scholar 

  26. Chen ML, Rogers QR, Harper AE (1962) Observations on protein digestion in vivo. IV Further observation of the gastrointestinal contents of rats fed different dietary proteins. J Nutr 76: 235–241

    PubMed  CAS  Google Scholar 

  27. Christensen HN, Wilber PB, Coyne BA, Fisher JH (1955) Effects of simultaneous or prior infusion of sugars on the fate of infused protein hydrolysates. J Clin Invest 34: 86–94

    PubMed  CAS  Google Scholar 

  28. Chung YC, Kim YS, Shadchehr A, Garrido M, MacGregor IL, Sleisinger MH (1979) Protein digestion and absorption in human small intestine. Gastroenterology 76: 1415–1421

    PubMed  CAS  Google Scholar 

  29. Chung YC, Silk DBA, Kim YS (1979) Intestinal transport of a tetrapeptide, Lleucylgylcyclglycyclglycine, in rat small intestine in vivo. Clin Sci 57: 1–11

    PubMed  CAS  Google Scholar 

  30. Cook GC (1973) Independent jejunal mechanisms for glycine and glycylgylcine transfer in man in vivo. Br J Nutr 30: 13–19

    PubMed  CAS  Google Scholar 

  31. Craft IL, Geddes D, Hyde CW, Wise IJ, Matthews DM (1968) Absorption and malabsorption of glycine and glycine peptides in man. Gut 9: 425–437

    PubMed  CAS  Google Scholar 

  32. Crane CW (1964) Studies on the absorption of 15N labelled yeast protein in normal subjects and patients with malabsorption. In: v. Munro HN (ed) The role of the gastrointestinal tract in protein metabolism. FA Davis, Philadelphia, pp 333–347

    Google Scholar 

  33. Curtis KJ, Gaines HD, Kim YS (1978) Protein digestion and absorption in rats with pancreatic duct occlusion. Gastroenterology 74: 1271–1276

    PubMed  CAS  Google Scholar 

  34. Curtis KJ, Kim YS, Perdomo JM, Silk DBA, Whitehead JS (1978) Protein digestion and absorption in the rat. J Physiol 274: 409–419

    PubMed  CAS  Google Scholar 

  35. Das M, Radhakrishnan AN (1975) Studies on a wide-spectrum intestinal dipeptide uptake system in the monkey and in the human. Biochem J 146: 133–139

    PubMed  CAS  Google Scholar 

  36. Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE (1969) Can intravenous feeding as the sole means of nutrition support growth in the child and restore weight loss in the adult? Ann Surg 169: 974–981

    PubMed  CAS  Google Scholar 

  37. Elman R, Weiner DO (1939) Intravenous alimentation. With special reference to protein (amino acid) metabolism. J Am Med Assoc 112: 796–802

    CAS  Google Scholar 

  38. Elman R (1940) Parenteral replacement of protein with the amino acids of hydrolysed casein. Ann Surg 112: 594–602

    PubMed  CAS  Google Scholar 

  39. Fairclough PD, Silk DBA, Clark ML, Matthews DM, Marrs TC, Burston D, Clegg KM (1977) Effect of glycylglycine on absorption from human jejunum of an amino acid mixture simulating casein and a partial enzymic hydrolysate of casein containing small peptides. Clin Sci Mol Med 53: 27–33

    PubMed  CAS  Google Scholar 

  40. Fairclough PD, Hegarty JE, Silk DBA, Clark ML (1980) A comparison of the absorption of two protein hydrolysates and their effects on water and electrolyte movements in the human jejunum. Gut 21: 829–834

    PubMed  CAS  Google Scholar 

  41. Farr LE, Emerson K Jr, Futcher PH (1940) The comparative nutritive efficiency of intravenous amino acids and dietary protein in children with the nephrotic syndrome. J Pediatr 16: 595–614

    Google Scholar 

  42. Ford C, Grimble GK, Halliday D, Silk DBA (1986) GC-MS analysis of dipeptides in nutritionally significant enzyme hydrolysates of ovalbumin and casein. Biochem Soc Trans 14: 1291–1293

    CAS  Google Scholar 

  43. Freeman HJ, Kim YS (1978) Digestion and absorption of protein. Ann Rev Med 29: 99–116

    PubMed  CAS  Google Scholar 

  44. Freeman HJ, Sleisinger MH, Kim YS (1983) Human protein digestion and absorption: Normal mechanisms and protein energy malnutrition. In: v. Sleisinger MH (ed/Hrsg) Clinics in Gastroenterology, vol 12 number 2. WB Saunders, London Philadelphia Toronto, pp/S 357–378

    Google Scholar 

  45. Furst P (1985) Peptides in parenteral nutrition. Clin Nutr 4 (Special Supplement): 105–115

    Google Scholar 

  46. Ganapathy V, Leibach FK (1985) Is intestinal transport energised by a proton gradient? Am J Physiol 249: G153 - G160

    PubMed  CAS  Google Scholar 

  47. Ganapathy V, Leibach FK (1986) Carrier mediated reabsorption of small peptides in renal proximal tubule. Am J Physiol 251: F945 - F953

    PubMed  CAS  Google Scholar 

  48. Gardner MLG (1983) Evidence for, and implications of, passage of intact peptides across the intestinal mucosa. Biochem Soc Trans 11: 810–813

    PubMed  CAS  Google Scholar 

  49. Gardner MLG (1984) Intestinal assimilation of intact peptides and proteins from the diet — a neglected field? Biol Rev 59: 289–331

    PubMed  CAS  Google Scholar 

  50. Gibson JA, Sladen GE, Dawson AM (1976) Protein absorption and ammonia production: The effects of dietary protein and removal of the colon. Br J Nutr 35: 61–65

    PubMed  CAS  Google Scholar 

  51. Gray GM, Cooper HL (1971) Protein digestion and absorption. Gastroenterology 61: 535–544

    PubMed  CAS  Google Scholar 

  52. Grimble GK, Silk DBA (1986) The optimum form of dietary nitrogen in gastrointestinal disease: Proteins, peptides or amino acids. Verhandlungen der Deutschen Gesellschaft für Innere Medizin 92:674–685. JF Bergmann, München

    Google Scholar 

  53. Grimble GK, Keohane PP, Higgins BE, Kaminski MV, Silk DBA (1986) Effect of peptide chain-length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clin Sci 71: 65–69

    PubMed  CAS  Google Scholar 

  54. Grimble GK, Rees RG, Keohane PP, Cartwright T, Desreumaux M, Silk DBA (1987) The effect of peptide chain-length on absorption of egg-protein hydrolysates in the normal human jejunum. Gastroenterology 92: 136–142

    PubMed  CAS  Google Scholar 

  55. Grimble GK, Rees RG, Halliday D, Ford C, Silk DBA (1986) Are enterally fed peptides better utilised than free amino acids in the short bowel syndrome? Clin Nutr [Suppl] 5: 50

    Google Scholar 

  56. Grimble GK, Raimundo AH, Rees RG, Hunjan MK, Silk DBA (1988) Parenteral utilisation of a purified short-chain enzymic hydrolysate of ovalbumin in man. J Parent Ent Nutr [Suppl] 12: 15S

    Google Scholar 

  57. Hegarty JE, Fairclough PD, Moriarty KJ, Kelly MJ, Clark ML (1982) Effects of concentration on in vivo absorption of a peptide containing protein hydrolysate. Gut 23: 304–309

    PubMed  CAS  Google Scholar 

  58. Hellier MD, Holdsworth CD, Perrett D, Thirumalai CD (1972) Intestinal dipeptide transport in normal and cystinuric subjects. Clin Sci Mol Med 43: 659–668

    CAS  Google Scholar 

  59. Hellier MD, Holdsworth CD, McColl I, Perrett D (1972) Dipeptide absorption in man. Gut 13: 965–969

    PubMed  CAS  Google Scholar 

  60. Hellier MD, Holdsworth CD, Perrett D (1973) Dibasic amino acid absorption in man. Gastroenterology 65: 613–618

    PubMed  CAS  Google Scholar 

  61. Heymsfield SB, Bethel RA, Ansley JD, Nixon DW, Rudman D (1979) Enteral hyperalimentation: An alternative to central venous hyperalimentation. Ann Int Med 90: 63–71

    PubMed  CAS  Google Scholar 

  62. Hill GL, Blackett RL, Pickfort I, Young GA (1977) Malnutrition in surgical patients. An unrecognised problem. Lancet I: 689–692

    Google Scholar 

  63. Hueckel HJ, Rogers QR (1970) Urinary excretion of hydroxyproline-containing peptides in man, rat, hamster, dog and monkey after feeding gelatin. Comp Biochem Physiol 32: 7–16

    PubMed  CAS  Google Scholar 

  64. Itoh H, Kishi T, Chibata I (1973) Comparative effects of casein and amino acid mixture simulating casein on growth and food intake in rats. J Nutr 103: 1709–1715

    CAS  Google Scholar 

  65. Johannson C (1975) Studies of gastrointestinal interactions: VII. Characteristics of the absorption pattern of sugar, fat and protein from composite meals in man: A quantitative study. Scand J Gastroenterol 10: 33–42

    Google Scholar 

  66. Jones DC, Rich AJ, Wright PD, Johnston IDA (1980) Comparison of proprietary elemental and whole-protein diets in unconscious patients with head injury. Br Med J 1: 493–495

    Google Scholar 

  67. Jones BJM, Lees R, Andrews J, Frost P, Silk DBA (1983) Comparison of an elemental and polymeric diet in patients with normal gastrointestinal function. Gut 24: 78–84

    PubMed  CAS  Google Scholar 

  68. Josefsson L, Lindberg T (1967) Intestinal dipeptidases: IX. Studies on dipeptidases of human intestinal mucosa. Acta Chem Scand 21: 1965–1966

    PubMed  CAS  Google Scholar 

  69. Kaplan MS, Mares A, Quintana P, Strauss J, Huxtable RF, Brennan P, Hays DM (1969) High caloric glucose-nitrogen infusions. Postoperative management of neonatal infants. Arch Surg 99: 567–571

    PubMed  CAS  Google Scholar 

  70. Keohane PP, Grimble GK, Brown B, Spiller RC, Silk DBA (1985) Influence of protein composition and hydrolysis method on intestinal absorption of protein in man. Gut 26: 907–913

    PubMed  CAS  Google Scholar 

  71. Kim YS, Birtwhistle W, Kim YW (1972) Peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. J Clin Invest 51: 1419–1430

    PubMed  CAS  Google Scholar 

  72. Kim YS, Kim YW, Sleisinger MH (1974) Studies on the properties of peptide hydrolases in the brush-border and soluble fractions of small intestinal mucosa of rat and man. Biochim Biophys Acta 370: 283–296

    PubMed  CAS  Google Scholar 

  73. Kim YS, Brophy EJ, Nicholson JA (1976) Rat intestinal brush border membrane peptidases 2. Enzymatic properties, immunochemistry and interactions with lectins of two different forms of the enzyme. J Biol Chem 251: 3206–3212

    PubMed  CAS  Google Scholar 

  74. Kreil G, Umbach M, Brantl V, Teschemacher H (1983) Studies on the enzymatic degradation of beta-casomorphins. Life Sci [Suppl] 33: 137–140

    CAS  Google Scholar 

  75. Krzysik BA, Adibi SA (1977) Cytoplasmic dipeptidase activities of kidney, ileum, jeunum, liver, muscle and blood. Am J Physiol 233: E450 — E456

    PubMed  CAS  Google Scholar 

  76. Lane AE, Silk DBA, Clark ML (1975) Absorption of two proline containing peptides by rat small intestine in vivo. J Physiol (Lond) 248: 143–149

    CAS  Google Scholar 

  77. Levenson SM, Smith Hopkins B, Waldron M, Canham JE, Seifter E (1984) Early history of parenteral nutrition. Fed Proc 43: 1391–1406

    PubMed  CAS  Google Scholar 

  78. Lidstrom F, Wretlind KAJ (1952) The effect of intravenous administration of a dialysed, enzymic casein hydrolysate (Aminosol) on the serum concentration and on the urinary excretion of amino acids. Scand J Clin Lab Invest 4: 167–178

    PubMed  CAS  Google Scholar 

  79. Long CL, Zikria JM, Kinney JM, Geiger JW (1974) Comparison of fibrin hydrolysates and crystalline amino acid solutions in parenteral nutrition. Am J Clin Nutr 27: 163–174

    PubMed  CAS  Google Scholar 

  80. Matthews DM (1975) Intestinal absorption of peptides. Physiol Rev 55: 537–608

    PubMed  CAS  Google Scholar 

  81. Matthews DM (1983) Intestinal absorption of peptides. Biochem Soc Trans 11: 808–810

    PubMed  CAS  Google Scholar 

  82. Matthews DM (1984) Absorption of peptides, amino acids and their methylated derivatives. In: v Stegnik LD, Filer LJ Jr (eds) Aspartame: Physiology and Biochemistry. Marcel Dekker, New York Basel, pp 29–46

    Google Scholar 

  83. Matthews DM, Adibi SA (1976) Peptide absorption. Gastroenterology 71: 151–161

    CAS  Google Scholar 

  84. Matthews DM, Payne JW (1980) Transmembrane transport of small peptides. Current Topics In Membranes and Transport, 14:331–425. Academic Press, New York

    Google Scholar 

  85. Matthews DM, Burston D (1983) Uptake of L-leucyl-L-leucine and glycylsarcosine by hamster jejunum in vitro. Clin Sci 65: 177–184

    PubMed  CAS  Google Scholar 

  86. Matthews DM, Burston D (1984) Uptake of a series of neutral dipeptides including L-alanylL-alanine, glycylglycine and glycyclsarcosine by hamster jejunum in vitro. Clin Sci 67: 541–549

    PubMed  CAS  Google Scholar 

  87. Miyamoto Y, Ganapathy V, Barlas A, Neubert K, Barth A, Leibach FK (1987) Role of dipeptidyl peptidase IV in uptake of peptide nitrogen from beta-casomorphin in rabbit renal BBMV. Am J Physiol 252: F670 - F677

    PubMed  CAS  Google Scholar 

  88. Moriarty KJ, Hegarty JE, Fairclough PD, Kelly MJ, Clark ML, Dawson AM (1985) Relative nutritional value of whole protein, hydrolysed protein and free amino acids in man. Gut 26: 694–699

    PubMed  CAS  Google Scholar 

  89. Navab F, Asatoor AM (1970) Studies on intestinal absorption of amino acids and a dipeptide in a case of Hartnup disease. Gut 11: 373–379

    PubMed  CAS  Google Scholar 

  90. Nethercut WD, Smith ADS, McAllister JM, La Ferla GA (1987) Nutritional survey of patients in a general surgical ward: Is there an effective predictor of malnutrition? J Clin Pathol 40: 803–807

    Google Scholar 

  91. Neuhauser M (1985) Utilisation of glycyl-L-tyrosine during long-term parenteral nutrition in the rat. Clin Nutr [Special Supplement] 4: 124–130

    Google Scholar 

  92. Newey H, Smyth DH (1959) The intestinal absorption of some dipeptides. J Physiol (Lond) 145: 48–56

    CAS  Google Scholar 

  93. Newey H, Smyth DH (1960) Intracellular hydrolysis of dipeptides during intestinal absorption. J Physiol (Lond) 152: 367–380

    CAS  Google Scholar 

  94. Newey H, Smyth DH (1962) Cellular mechanisms in intestinal transfer of amino acids. J Physiol (Lond) 164: 527–551

    CAS  Google Scholar 

  95. Newsholme EA, Crabtree B, Ardawi MSM (1985) Glutamine metabolism in lymphocytes: Its biochemical, physiological and clinical importance. Quart J Exp Physiol 70: 473–489

    CAS  Google Scholar 

  96. Nicholson JA, Peters TJ (1978) Subcellular distribution of hydrolase activities for glycine and leucine homopeptides in human jejunum. Clin Sci Mol Med 54: 205–207

    PubMed  CAS  Google Scholar 

  97. Nicholson JA, Peters TJ (1979) Subcellular localisation of peptidase activity in the human jejunum. Eur J Clin Invest 9: 349–354

    PubMed  CAS  Google Scholar 

  98. Nixon SE, Mawer GE (1970) The digestion and absorption of protein in man. 1. The site of absorption. Br J Nutr 24: 227–240

    PubMed  CAS  Google Scholar 

  99. Nixon SE, Mawer GE (1970) The digestion and absorption of protein in man. 2. The form in which digested protein is absorbed. Br J Nutr 24: 241–258

    PubMed  CAS  Google Scholar 

  100. Peaston MJT (1968) A comparison of hydrolysed L- and synthesised DL-amino acids for complete parenteral nutrition. Clin Pharm Therap 9: 61–66

    PubMed  CAS  Google Scholar 

  101. Peters TJ (1970) The subcellular localisation of di-and tripeptide hydrolase activity in guinea pig small intestine. Biochem J 120: 195–203

    PubMed  CAS  Google Scholar 

  102. Petrilli P, Pucci P, Pelissier P, Addeo F (1987) Digestion by pancreatic juice of a betacasomorphin-containing fragment of buffalo beta-casein. Int J Peptide Res 29: 504–507

    CAS  Google Scholar 

  103. Prockop DJ, Sjoerdsma A (1961) Significance of urinary hydroxyproline in man. J Clin Invest 40: 843–849

    PubMed  CAS  Google Scholar 

  104. Prockop DJ, Keiser HR, Sjoerdsma A (1962) Gastrointestinal absorption and renal excretion of hydroxyproline peptides. Lancet II: 527–528

    Google Scholar 

  105. Rees RG, Raimundo AH, Grimble GK, Hunjan MK, Silk DBA (1988) Peptide based nitrogen source of enteral diets: Studies with casein hydrolysates in man. J Parent Ent Nutr [Suppl] 12: 21S

    Google Scholar 

  106. Rees RG, Payne-James JJ, Grimble GK, Silk DBA (1988) Requirement of peptides versus whole protein in patients with moderately impaired gastrointestinal function: A double-blind controlled crossover study. J Parent Ent Nutr [Suppl] 12: 12S

    Google Scholar 

  107. Rubino A, Field M, Schwachman H (1971) Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J Biol Chem 246: 3542–3548

    PubMed  CAS  Google Scholar 

  108. Sampson B, Barlow GB (1980) Separation of peptides and amino acids by ion-exchange chromatography of their copper complexes. J Chrom 183: 9–15

    CAS  Google Scholar 

  109. Schmitz J, Triadou N (1982) Digestion et absorption intestinales des peptides. Gastroenterol Clin Biol 6: 651–661

    PubMed  CAS  Google Scholar 

  110. Schultz SG, Curran PF (1970) Coupled transport of sodium and organic solutes. Physiol Rev 50: 637–672

    PubMed  CAS  Google Scholar 

  111. Semeriva M, Varesi L, Gratecos D (1982) Studies on transport of amino acids from peptides by rat small intestine in vitro: Synthesis, properties and uptake of a photosensitive tetrapeptide. Eur J Biochem 122: 619–626

    PubMed  CAS  Google Scholar 

  112. Shanbhogue LKR, Bistrian BR, Blackburn GL (1986) Trends in enteral nutrition in the surgical patient. J R Coll Surg Edinb 31: 267–273

    PubMed  CAS  Google Scholar 

  113. Silk DBA (1974) Progress Report: Peptide absorption in man. Gut 15: 494–501

    PubMed  CAS  Google Scholar 

  114. Silk DBA (1981) Peptide Transport. Clin Sci 60: 607–615

    PubMed  CAS  Google Scholar 

  115. Silk DBA (1986) Future of enteral nutrition. Gut [Special Suppl] 27: 116–122

    Google Scholar 

  116. Silk DBA, Dawson AM (1979) Intestinal absorption of carbohydrate and protein in man. In: v Crane RK (ed) International Review of Physiology. Gastrointestinal Physiology III Vol 19. University Park Press, Baltimore, pp 151–204

    Google Scholar 

  117. Silk DBA, Marrs TC, Addison JM, Burston D, Clark ML, Matthews DM (1973) Absorption of amino acids from an amino acid mixture simulating casein and a tryptic hydrolysate of casein in man. Clin Sci Mol Med 45: 715–719

    PubMed  CAS  Google Scholar 

  118. Silk DBA, Perrett D, Stephens AD, Clark ML, Scowen EF (1974) Intestinal absorption of cystine and cysteine in normal human subjects and patients with cystinuria. Clin Sci Mol Med 47: 393–397

    PubMed  CAS  Google Scholar 

  119. Silk DBA, Perrett D, Webb JPW, Clark ML (1974) Absorption of two tripeptides by the human small intestine. A study using a perfusion technique. Clin Sci Mol Med 46: 393–402

    PubMed  CAS  Google Scholar 

  120. Silk DBA, Perrett D, Clark ML (1975) Jejunal and ileal absorption of dibasic amino acids and an arginine containing dipeptide in cystinuria. Gastroenterology 68: 1426–1432

    PubMed  CAS  Google Scholar 

  121. Silk DBA, Clark ML, Marrs TC, Addison JM, Burston D, Matthews DM, Clegg KM (1975) Jejunal absorption of an amino acid mixture simulating casein and an enzymic hydrolysate of casein prepared for oral administration to normal adults. Br J Nutr 33: 95–100

    PubMed  CAS  Google Scholar 

  122. Silk DBA, Nicholson JA, Kim YS (1976) Relationships between mucosal hydrolysis and transport of two phenylalanine dipeptides. Gut 17: 870–876

    PubMed  CAS  Google Scholar 

  123. Silk DBA, Chung YC, Berger KL, Conley K, Sleisinger MH, Spiller GA, Kim YS (1979) Comparison of oral feeding of peptide and amino acid meals to normal human subjects. Gut 20: 291–299

    PubMed  CAS  Google Scholar 

  124. Silk DBA, Fairclough PD, Clark ML, Hegarty JE, Marrs TC, Addison JM, Burston D, Clegg KM, Matthews DM (1980) Uses of a peptide rather than a free amino acid nitrogen source in chemically defined elemental diets. J Parent Ent Nutr 4: 548–553

    CAS  Google Scholar 

  125. Sleisinger GE, Burston D, Dalrymple JA, Wilkinson S, Matthews DM (1976) Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology 71: 76–81

    Google Scholar 

  126. Smithson KW, Gray GM (1977) Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush-border membrane aminopeptidases. J Clin Invest 60: 665–674

    PubMed  CAS  Google Scholar 

  127. Song I-S, Yoshioko M, Erickson RH, Miura S, Guan D, Kim YS (1986) Identification and characterisation of brush-border membrane-bound neutral metalloendopeptidases from rat small intestine. Gastroenterology 91: 1234–1242

    PubMed  CAS  Google Scholar 

  128. Souba WW, Scott TE, Wilmore DW (1985) Intestinal consumption of intravenously administered fuels. J Parent Ent Nutr 9: 18–22

    CAS  Google Scholar 

  129. Stegink LD, Baker GL (1971) Infusion of protein hydrolysates in the new-born infant. Plasma amino acid concentrations. J Pediatr 78: 595–602

    PubMed  CAS  Google Scholar 

  130. Stehle P (1988) Bedarfsgerechte Bereitstellung von kurzkettigen Peptiden: Eine Voraussetzung für deren Einsatz in der künstlichen Ernährung. Infusionstherapie 15: 27–32

    PubMed  CAS  Google Scholar 

  131. Steinhardt HJ, Paleos GA, Brandl M, Fekl WE, Adibi SA (1984) Efficacy of a synthetic dipeptide mixture as the source of amino acids for total parenteral nutrition in a subhuman primate (baboon). Gastroenterology 86: 1562–1569

    PubMed  CAS  Google Scholar 

  132. Steinhardt HJ, Wolf A, Jakober B, Brandl M, Langer K, Fekl W, Adibi SA (1986) Efficiency of nitrogen absorption from whole vs. hydrolysed protein after total pancreatectomy in man. Clin Nutr [Suppl] 5: 108A

    Google Scholar 

  133. Stengel A Jr, Ravdin IS (1939) The maintenance of nutrition in surgical patients with a description of the orojejunal method of feeding. Surgery 6: 511–519

    Google Scholar 

  134. Tobey N, Heizer W, Yeh R, Huang T-I, Hoffner C (1985) Human intestinal brush border peptidases. Gastroenterology 88: 913–926

    PubMed  CAS  Google Scholar 

  135. Tweedle DEF, Spivey J, Johnston IDA (1973) Choice of intravenous amino acid solutions for use after surgical operation. Metabolism 22: 173–178

    PubMed  CAS  Google Scholar 

  136. Uram JA, Friedman L, Kline OL (1960) Relation of pancreatic exocrine function to nutrition of the rat. Am J Physiol 199: 387–394

    PubMed  CAS  Google Scholar 

  137. Vasile’v PS, Suzdaleva VV (1978) Preparations for parenteral protein nutrition and their significance in medicine. Sov Med 2: 91–93

    Google Scholar 

  138. Whitecross DP, Armstrong C, Clark AD, Piper DW (1973) The pepsinogens of human gastric mucosa. Gut 14: 850–855

    PubMed  CAS  Google Scholar 

  139. Wiggans DS, Johnston JM (1959) The absorption of peptides. Biochim Biophys Acta 32: 69–73

    PubMed  CAS  Google Scholar 

  140. Windmueller HG (1982) Glutamine metabolism by the small intestine. Adv Enzymol 53: 202–238

    Google Scholar 

  141. Wretlind KAJ (1974) Amino acid solutions. In: v Lee HA (ed) Parenteral nutrition in acute metabolic illnesses. Academic Press, London New York, pp 333–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Grimble, G.K., Silk, D.B.A. (1989). Milk Protein and Enteral and Parenteral Feeding in Disease. In: Barth, C.A., Schlimme, E. (eds) Milk Proteins. Steinkopff. https://doi.org/10.1007/978-3-642-85373-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85373-9_43

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85375-3

  • Online ISBN: 978-3-642-85373-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics