Skip to main content
  • 13 Accesses

Zusammenfassung

Chinidin und Lidocain unterscheiden sich im wesentlichen bezüglich der Frequenzabhängigkeit ihrer Hemmwirkung auf den schnellen Na+-Kanal der Myokardzellmembran. Lidocain bewirkt eine schnell einsetzende Na+-Kanal-Blockade und eine schnelle Wiedererholung, während nach Chinidin die Blockbildung sehr langsam einsetzt und die Wiedererholung stark verzögert abläuft. Mit Hilfe der Theorie vom modulierten Rezeptor läßt sich die Na+-Kanal-Inhibition für beide Antiarrhythmika auf ein einheitliches Wirkprinzip zurückführen, wobei die substanzspezifischen Unterschiede in der Entstehung und Rückbildung des Blocks auf Unterschiede in der Assoziations-und Dissoziationskinetik am Kanalrezeptor basieren. Hieraus lassen sich wichtige Konsequenzen für die Therapie ableiten: Arrhythmieformen, die vor allem von einzelnen frühzeitig einfallenden Extrasystolen geprägt sind, werden durch Lidocain effektiver unterdrückt, während tachykarde Formen geeigneter durch Chinidin zu therapieren sind.

In Analogie zu den Na+-Kanal-Inhibitoren läßt sich auch fur die Kalziumantagonisten Nifedipin und Verapamil ein Unterschied in der Frequenzabhängigkeit der Ca2+-Kanal-Blockade nachweisen. Ähnlich wie unter Lidocain tritt die Blockierung der lonenkanäle unter Nifedipin im Unterschied zu Verapamil erst bei sehr hohen Herzfrequenzen auf. Dieser Wirkunterschied läßt sich u. a. als Erklärung für die fehlende antiarrhythmische Wirkung von Nifedipin heranziehen.

Die Kombination von Na+- und Ca2+-Kanal-Inhibitoren (Chinidin und Verapamil) erweist sich in bezug auf die antiarrhythmische Wirkung als besonders günstig, da sich die Wirksamkeit auf den gesamten Membranpotentialbereich erstreckt (−90 mV bis −60 mV: Na+-System, oberhalb −60 mV: Ca2+-System).

Summary

The prime difference between quinidine and lidocaine is found in their rate-dependent inhibitory effect on the fast Na+ channel of the myocardial cell membrane. Lidocaine causes a rapid onset of Na+ channel blockade and a rapid recovery while quinidine induces block very slowly and markedly delays recovery. Based on the theory of the modulated receptor the Na+ channel inhibition of both antiarrhythmic drugs can be attributed to one principle of action, which they both have in common. The substance-specific differences in the formation and regression of the block are due to differences in association and dissociation kinetics at the channel receptor. The following therapeutic consequences of great value can be derived: lidocaine is more effective in suppressing arrhythmias which are characterized by single premature extrasystoles while quinidine is more effective for the treatment of tachyarrhythmias.

As with the Na+ channel inhibitors a difference regarding rate dependency of the Ca2+ channel blockade can be demonstrated for the calcium antagonists nifedipine and verapamil. Unlike verapamil and similar to lidocaine, nifedipine blocks the ion channels only at very high heart rates. This difference in action is one explanation for the missing antiarrhythmic effect of nifedipine.

The combination of Na+ and Ca2+ channel inhibitors (quinidine and verapamil) proves to have a particularly favourable antiarrhythmic action as it is effective in the whole membrane potential range (−90 mV to −60 mV: Na+ system, above −60 mV: Ca2+ system).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Horn R, Patlak J, Stevens CF (1981) Sodium channels need not open before they inactivate. Nature 291: 426–427

    Article  PubMed  CAS  Google Scholar 

  2. Colatsky TJ (1982) Mechanism of action of lidocaine and quinidine on action potential duration in rabbit Purkinje fibers. Circ Res 50: 17–27

    PubMed  CAS  Google Scholar 

  3. Lee KS, Hume JR, Giles W, Brown AM (1981) Sodium current depression by lidocaine and quinidine in isolated ventricular cells. Nature 291: 325–327

    Article  PubMed  CAS  Google Scholar 

  4. Courtney KR (1975) Mechanism of Frequency-dependent Inhibition of Sodium Currents in Frog Myelinated Nerve by the Lidocaine Derivative GEA 968. J Pharmacol Exp Ther 195: 225–236

    PubMed  CAS  Google Scholar 

  5. Hondeghem L, Katzung BG (1980) Test of a model of antiarrhythmic drug action. Circulation 61: 1217–1226

    PubMed  CAS  Google Scholar 

  6. Hille B (1977) Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol 69: 497–515

    Article  PubMed  CAS  Google Scholar 

  7. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    PubMed  CAS  Google Scholar 

  8. Beeler GW, Reuter H (1977) Reconstruction of the action potential of ventricular myocardial fibers. J Physiol 268: 177–210

    PubMed  CAS  Google Scholar 

  9. Walton M, Fozzard HA (1979) The relation of Vmax to ‘Na, GNa, and h,„„ in a model of the cardiac Purkinje fiber. Biophys J 25: 407–420

    Google Scholar 

  10. Hondeghem LM (1978) Validity of Vmax as a measure of the sodium current in cardiac and nervous tissues. Biophys J 23: 147–152

    Article  PubMed  CAS  Google Scholar 

  11. Cohen I, Attwell D, Strichartz G (1981) The dependence of the maximum rate of rise of the action potential upstroke on membrane properties. Proc R Soc Lond B 214: 85–98

    Article  PubMed  CAS  Google Scholar 

  12. Reuter H (1984) Ion channels in cardiac cell membranes. Ann Rev Physiol 46: 473–484

    Article  CAS  Google Scholar 

  13. Hondeghem LM, Katzung BG (1977) Time-and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta 472: 373–398

    PubMed  CAS  Google Scholar 

  14. Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking agents. Ann Rev Pharmacol Tox 24: 387–423

    Google Scholar 

  15. Oshita S, Sada H, Kojima M, Ban T (1980) Effects of tocainide and lidocaine on the trans-membrane action potentials as related to external potassium and calcium concentrations in guinea-pig papillary muscles. Naunyn-Schmiedeberg’s Arch Pharmacol 314: 67–82

    Article  PubMed  CAS  Google Scholar 

  16. Kohlhardt M, Seifert C, Hondeghem LM (1983) Tonic and phasic INa blockade by antiarrhythmics. Different properties of drug binding to fast sodium channels as judged from V.. studies with propafenone and derivatives in mammalian ventricular myocardium. Pflügers Arch 396: 199–209

    Google Scholar 

  17. Gintant GA, Hoffman BF (1984) Use-dependent block of cardiac sodium channels by quaternary derivatives of lidocaine. Pflügers Arch 400: 121–129

    Article  PubMed  CAS  Google Scholar 

  18. Mason JW, Hondeghem LM, Katzung BG (1983) Amiodarone blocks inactivated cardiac sodium channels. Pflügers Arch 396: 79–81

    Article  PubMed  CAS  Google Scholar 

  19. Courtney KR (1981) Comparative actions of mexiletine on sodium channels in nerve, skeletal and cardiac muscle. Eur J Pharmacol 74: 9–18

    Article  PubMed  CAS  Google Scholar 

  20. Sada H, Kohima M, Ban T (1979) Effect of Procainamide on transmembrane action potentials in guinea-pig papillary muscles as affected by external potassium concentration. NaunynSchmiedeberg’s Arch Pharmacol 309: 179–190

    Article  CAS  Google Scholar 

  21. Borchard U, Boisten M (1982) Effect of flecainide on action potentials and alternating current-induced arrhythmias in mammalian myocardium. J Cardiovasc Pharmacol 4: 205–212

    Article  PubMed  CAS  Google Scholar 

  22. Breithardt G, Seipel L, Abendroth RR (1981) Comparison of antiarrhythmic efficacy of disopyramide and mexiletine against stimulus-induced ventricular tachycardia. J Cardiovasc Pharmacol 3: 1026–1037

    Article  PubMed  CAS  Google Scholar 

  23. Duff HJ, Roden D, Primm RK, Oates JA, Woosley RL (1983) Mexiletine in the treatment of resistant ventricular arrhythmias: Enhancement of efficacy and reduction of dose-related side effects by combination with quinidine. Circulation 67: 1124–1128

    Google Scholar 

  24. Rosen MR, Merker C, Pippenger CE (1976) The effects of lidocaine on the canine ECG and elektrophysiologic properties of Purkinje fibers. Am Heart J 91: 191–200

    Article  PubMed  CAS  Google Scholar 

  25. Isenberg G, Kloeckner U (1982) Calcium tolerant ventricular myocytes prepared by preincubation in a »KB medium». Pflügers Arch 395: 6–18

    Article  PubMed  CAS  Google Scholar 

  26. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Ann Rev Physiol 46: 455–472

    Article  CAS  Google Scholar 

  27. Fleckenstein A (1983) Calciumantagonism in heart and smooth muscle. John Wiley & Sons, New York—Chichester—Brisbane—Toronto—Singapore

    Google Scholar 

  28. Borchard U, Hafner D, Hirth C, Springer HJ (1982) Elektrophysiologische Untersuchungen zum Wirkungsmechanismus von Diltiazem. In: Calciumantagonisten zur Behandlung der Angina pectoris, Hypertonie and Arrhythmie ( Bender F, Greeff K, eds). Excerpta Medica, Amsterdam—Oxford—Princeton p 251–267

    Google Scholar 

  29. Nawrath H, Blei I, Gegner R, Ludwig C, Zong X-g (1981) No stereospecific effects of the optical isomers of verapamil and D-600 on the heart. In: Calciumantagonism in cardiovascular therapy ( Zanchetti A, Krikler DM, eds). Excerpta Medica, Amsterdam—Oxford—Princeton pp 52–63

    Google Scholar 

  30. McDonald TF, Pelzer D, Trautwein W (1984) Cat ventricular muscle treated with D-600: effects on calcium and potassium currents. J Physiol 352: 203–216

    PubMed  CAS  Google Scholar 

  31. Coraboeuf E (1978) Ionic basis of electrical activity in cardiac tissues. Am J Physiol 234:H101—H 117

    Google Scholar 

  32. Cavalié A, Pelzer D, Trautwein W (1984) Modulation of the gating properties of single calcium channels by D600. Proc Physiol Soc (in press)

    Google Scholar 

  33. Hirth C, Borchard U, Hafner D (1983) Effects of the calcium antagonist diltiazem on action potentials, slow response and force of contraction in different cardiac tissues. J Mol Cell Cardiol 15: 799–809

    Article  PubMed  CAS  Google Scholar 

  34. Allen DG, Eisner DA, Orchard CH (1984) Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J Physiol 352: 113–128

    PubMed  CAS  Google Scholar 

  35. Gülker H, Bender F, Heuer H, Thale J (1982) Erhöhte antifibrillatorische Wirksamkeit von Chinidin bei Vorhofflimmern durch Verapamil. Z Kardiol 71: 31–34

    PubMed  Google Scholar 

  36. Imanishi S, McAllister RG, Surawicz B (1978) The effects of verapamil and lidocaine on the automatic depolarizations in guinea-pig ventricular myocardium. J Pharmacol exp Ther 207: 294–303

    PubMed  CAS  Google Scholar 

  37. Gettes LS (1971) The electrophysiologic effects of antiarrhythmic drugs. Am J Cardiol 28: 526–535

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Borchard, U., Hafner, D. (1985). Kardiale Elektrophysiologie von Na+- und Ca2+-Kanal-Inhibitoren. In: Bender, F., Greeff, K. (eds) Kombinationstherapie der Herzrhytmusstörungen mit Chinidin und Verapamil. Steinkopff. https://doi.org/10.1007/978-3-642-85346-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85346-3_7

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-85347-0

  • Online ISBN: 978-3-642-85346-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics