Evolution of Tropospheric Ions

  • M. I. Huertas
  • J. Fontan


The purpose of this work is to clarify the agglomeration phenomena around small positive and negative ions of tropospheric air. Evolution of tropospheric ions is not well-known; polluting vapors act upon this evolution, according to chemical reactions which are not well understood.

The apparatus used enables us to measure simultaneously the mobility and the mass of ions created in a mixture of atmospheric air and various polluting vapors, at a pressure up to 40 torrs. The experimental results have shown the importance of portonation in the positive ion formation. The evolution rate constants of negative ions are slower than those of positive ions. Finally a mathematical model has allowed a qualitative approach to the sequence of positive ion-molecule reactions in the lower troposphere.


Organic Vapor Torr Pressure Source Chamber Agglomeration Phenomenon Townsend Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bohme, D. K., Dunkin, D. B., Fehsenfeld, F. C, and Ferguson, E. E., J. Chem. Phys. 49, 5201 (1968).CrossRefGoogle Scholar
  2. 2.
    Carroll, D. I., and Mason, E. A., A theoretical relationship between ion mobility and mass, paper presented at 19th Annual Conference on Mass Spectrometry (Atlanta 1971).Google Scholar
  3. 3.
    Cohen, M. J., Kilpatrick, W. D., Carroll, D. L, Werlund, R. F., and Gibson, H. C, (abstract), Eos Trans, AGU 51 (11), 760 (1970).Google Scholar
  4. 4.
    Ferguson, E. E., and Fehsenfeld, F. C, J. Geophys. Res. 74, 5743 (1969).CrossRefGoogle Scholar
  5. 5.
    Griffin, G. W., Dzidic, L, Carroll, D. L, Stillwell, R. N., and Horning, E. C, Anal. Chem. 45 (7), 1204 (1973).CrossRefGoogle Scholar
  6. 6.
    Huertas, M. L., Contribution à l’étude des ions positifs de la troposphere, Doctorat ès-sciences physiques dissertation, n°493, Univ. of Toulouse (France 1972).Google Scholar
  7. 7.
    Huertas, M. L., Marty, A. M., and Fontan, J., J. Geophys. Res. 79, 1737 (1974a).CrossRefGoogle Scholar
  8. 8.
    Huertas, M. L., and Fontan, J., Evolution times of tropospheric positive ions, submitted to “Atmospheric Environment” (1974 b).Google Scholar
  9. 9.
    Kebarle, P., Advance Chem. Ser. 72, 24 (1968).CrossRefGoogle Scholar
  10. 10.
    Mohnen, V. A., On the nature of tropospheric ions, Planet. Electro-dynamics, vol. 1, edited by S. Coroniti and J. Hughes, p. 197 (New York 1969).Google Scholar
  11. 11.
    Mohnen, V. A., Pure and Appl. Geophys. 84, 141 (1971).CrossRefGoogle Scholar
  12. 12.
    Mohnen, V. A., Pure and Appl. Geophys. 100, 123 (1972).CrossRefGoogle Scholar
  13. 13.
    Munson, M. S. B., J. Amer. Chem. Soc. 87,2332 (1965).CrossRefGoogle Scholar
  14. 14.
    Niles, F. E., J. Chem. Phys. 52 (1), 408 (1970).CrossRefGoogle Scholar
  15. 15.
    Siksna, R., Role of water substance in the structure of ions in ambient atmospheric air, Planet. Electrodynamics, vol. 1, edited by S. Coroniti and J. Hughes, p. 207 (New York 1969).Google Scholar
  16. 16.
    Siksna, R., The structure of aggregates formed by means of the hydrogen bonds between molecules and some organic substances, paper presented at the 15th General Assembly of the IUGG, Moscow (1971).Google Scholar
  17. 17.
    Thomas, L., J. Atmos. Terr. Phys. 33, 157 (1971).CrossRefGoogle Scholar
  18. 18.
    Young, C. E., and Falconner, W. E., J. Chem. Phys. 57 (2), 918 (1972).CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG., Darmstadt 1976

Authors and Affiliations

  • M. I. Huertas
    • 1
  • J. Fontan
    • 1
  1. 1.Centre de Physique Atomique, Physique des Aérosols etUniversite Paul SabatierCedexFrance

Personalised recommendations