EJB Reviews pp 55-74 | Cite as

Signal recognition particle (SRP), a ubiquitous initiator of protein translocation

  • Henrich Lütcke
Part of the European Journal of Biochemistry book series (EJB REVIEWS, volume 1995)


In higher eukaryotes, most secretory and membrane proteins are synthesised by ribosomes which are attached to the membrane of the rough endoplasmic reticulum (RER). This allows the proteins to be translocated across that membrane already during their synthesis. The ribosomes are directed to the RER membrane by a cytoplasmic ribonucleoprotein particle, the signal recognition particle (SRP). SRP fulfills its task by virtue of three distinguishable activities: the binding of a signal sequence which, being part of the nascent polypeptide to be translocated, is exposed on the surface of a translating ribosome; the retardation of any further elongation; and the SRP-receptor-mediated binding of the complex of ribosome, nascent polypetide and SRP to the RER membrane which results in the detachment of SRP from the signal sequence and the ribosome and the insertion of the nascent polypeptide into the membrane. Evidence is accumulating that SRP is not restricted to eukaryotes: SRP-related particles and SRP-receptor-related molecules are found ubiquitously and may function in protein translocation in every living organism.


Signal recognition particle (SRP) protein translocation ribonucleoprotein particle signal­sequence-specific chaperone GTPases 



signal recognition particle


SRP receptor


rough endoplasmic reticulum


scanning transmission electron microscopy


RNA polymerase III




nascent-polypeptide-associated complex


guanine-nucleotide release factor


GTPase-activating protein


guanine-nucleotide dissociation inhibitor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman, M. R., Sabatini, D. D., Blobel, G. (1973) Ribosome-membrane interaction: Nondestructive disassembly of rat liver microsomes into ribosomal and membranous components, J. Cell Biol. 56, 206–229.PubMedGoogle Scholar
  2. Ainger, K. J., Meyer, D. I. (1986) Translocation of nascent secretory proteins across membranes can occur late in translation, EMBO J. 5, 951–955.PubMedGoogle Scholar
  3. Althoff, S., Selinger, D., Wise, J. A. (1994) Molecular evolution of SRP cycle components: functional implications, Nucleic Acids Res. 22, 1933–1947.PubMedGoogle Scholar
  4. Altman, E., Kumamoto, C. A., Emr, S. (1991) Heat shock proteins can substitute for SecB function during export in Escherichia coli, EMBO J. 10, 239–245.PubMedGoogle Scholar
  5. Amaya, Y., Nakano, A., Ito, K., Mori, M. (1990) Isolation of a yeast gene, SRH1, that encodes a homologue of the 54 K subunit of signal recognition particle, J. Biochem. (Tokyo) 107, 457–463.Google Scholar
  6. Amaya, Y., Nakano, A. (1991) SRHI protein, the yeast homologue of the 54 kDa subunit of signal recognition particle, is involved in ER translocation of secretory proteins, FEBS Lett. 283, 325–328.Google Scholar
  7. Andreazzoli, M., Gerbi, S. A. (1991) Changes in 7SL RNA conformation during the signal recognition particle cycle, EMBO J. 10, 767–777.PubMedGoogle Scholar
  8. Andrews, D. W., Walter, P., Ottensmeyer, F. P. (1985) Structure of the signal recognition particle by electron microscopy, Proc. Natl Acad. Sci. USA 82, 785–789.PubMedGoogle Scholar
  9. Andrews, D. W., Walter, P., Ottensmeyer, F. P. (1987) Evidence for an extended 7SL RNA structure in the signal recognition particle, EMBO J. 6, 3471–3477.PubMedGoogle Scholar
  10. Antao, V. P., Lai, S. Y., Tinoco, I. J. (1991) A thermodynamic study of unusually stable RNA and DNA hairpins, Nucleic Acids Res. 19, 5901–5905.PubMedGoogle Scholar
  11. Bernstein, H. D., Poritz, M. A., Strub, K., Hoben, P. J., Brenner, S., Walter, P. (1989) Model for signal sequence recognition from amino-acid sequence of 54 K subunit of signal recognition particle, Nature 340, 482–486.PubMedGoogle Scholar
  12. Bernstein, H. D., Zopf, D., Freymann, D. M., Walter, P. (1991) Functional substitution of the signal recognition particle 54-kDa subunit by its Escherichia coli homolog, Proc. Natl Acad. Sci. USA 90, 5229–5233.Google Scholar
  13. Bishop, J. M., Levinson, W. E., Sullivan, D., Fanshier, L., Quintrell, N., Jackson, J. (1970) The low molecular mass RNAs of Rous sarcoma virus II. The 7 S RNA, Virology 42, 927–937.PubMedGoogle Scholar
  14. Blobel, G., Sabatini, D. D. (1970) Controlled proteolysis of nascent polypeptides in rat liver fractions. I. Location of the poylpeptides within ribosomes, J. Cell Biol. 45, 130–145.PubMedGoogle Scholar
  15. Boguski, M. S., McCormick, F. (1993) Proteins regulating Ras and its relatives, Nature 366, 643–654.PubMedGoogle Scholar
  16. Bourne, H. R., Sanders, D. A., McCormick, F. (1990) The GTPase superfamily, a conserved switch for diverse cell functions, Nature 348, 125–132.PubMedGoogle Scholar
  17. Bourne, H. R., Sanders, D. A., McCormick, E (1991) The GTPase superfamily: conserved structure and molecular mechanism, Nature 349, 117–127.PubMedGoogle Scholar
  18. Bovia, F., Bui, N., Strub, K. (1994) The heterodimeric subunit SRP9/ 14 of the signal recognition particle functions as permuted single polypeptide chain, Nucleic Acids Res. 22, 2028–2035.PubMedGoogle Scholar
  19. Bredow, S., Kleinert, H., Benecke, B.-J. (1990) Sequence and factor requirements for faithful in vitro transcription of human 7SL DNA, Gene 86,217–225.Google Scholar
  20. Brennwald, P., Liao, X., Porter, H. K. G., Wise, J. A. (1988) Identification of an essential Schizosaccharomyces pombe RNA homologous to the 7SL component of signal recognition particle, Mol. Cell. Biol. 8, 1580–1590.PubMedGoogle Scholar
  21. Brown, S. (1987) Mutations in the gene for EF-G reduce the requirement for 4.5S RNA in the growth of E. coli., Cell 49, 825–833.PubMedGoogle Scholar
  22. Brown, S. (1991) 4.5S RNA: Does form predict function? New Biol. 3, 430–438.Google Scholar
  23. Brown, J. D., Hann, B. C., Medzihradszky, K. F., Niwa, M., Burlingame, A. L., Walter, P. (1994) Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression, EMBO J. 13, 4390–4400.PubMedGoogle Scholar
  24. Bui, N., Bovia, F., Wolff, N., Morrical, M. D., Walter, P., Strub, K. (1994) EMBO GenBank access nos X78304, X78305.Google Scholar
  25. Byström, A. S., Hjalmarsson, K. J., Wikström, P. M., Björk G. R. (1983) The nucleotide sequence of an Escherichia coli operon containing genes for the tRNA(m1G)methyltransferase, the ribosomal proteins S16 and L19 and a 21-K polypeptide, EMBO J. 2, 899–905.PubMedGoogle Scholar
  26. Campos, N., Palau, J., Torrent, M., Ludevid, D. (1988) Signal recognition-like particles are present in maize, J. Biol. Chem. 263, 9646–9650.PubMedGoogle Scholar
  27. Chang, D.-Y., Marcia, R. J. (1993) A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro, J. Biol. Chem. 268, 64236428.Google Scholar
  28. Chang, D.-Y., Nelson, B., Bilyeu, T., Hsu, K., Darlington, G. J., Marcia, R. J. (1994) A human Alu RNA-binding protein whose ex-pression is associated with accumulation of small cytoplasmic Alu RNA, Mol. Cell. Biol. 14, 3949–3959.PubMedGoogle Scholar
  29. Chen, P.-J., Cywinski, A, Taylor, J. M. (1985) Reverse transcription of 7S L RNA by an avian retrovirus, J. Virol. 54, 278–284.Google Scholar
  30. Chirico, W. J., Waters, M. G. , Blobel, G. (1988) 70 K heat shock related proteins stimulate protein translocation into microsomes, Nature,332 805–810.PubMedGoogle Scholar
  31. Clanton, D. J., Hattori, S., Shih, T. Y. (1986) Mutations of the ras gene product p21 that abolish guanine nucleotide binding, Proc. Natl Acad. Sci. USA 83, 5076–5080.PubMedGoogle Scholar
  32. Collier, D. N., Bankaitis, V. A., Weiss, J. B., Bassford, P. J. (1988) The antifolding activity of secB promotes the export of the E. coli maltose-binding protein, Cell 53, 273–283.PubMedGoogle Scholar
  33. Connolly, T., Gilmore, R. (1986) Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein, J. Cell Biol. 103, 2253–2261.PubMedGoogle Scholar
  34. Connolly, T., Gilmore, R. (1989) The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide, Cell 57, 599–610.PubMedGoogle Scholar
  35. Connolly, T., Collins, P., Gilmore, R. (1989) Access of proteinase K to partially translocated nascent polypeptides in intact and detergentsolubilized membranes, J. Cell Biol. 108, 299–307.PubMedGoogle Scholar
  36. Connolly, T., Rapiejko, P. J., Gilmore, R. (1991) Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor, Science 252, 1171–1173.Google Scholar
  37. Connolly, T., Gilmore, R. (1993) GTP hydrolysis by complexes of the signal recognition particle and the signal recognition particle receptor, J. Cell Biol. 123, 799–807.PubMedGoogle Scholar
  38. Crooke, E., Guthrie, B., Lecker, S., Lill, R., Widmer, W. (1988) ProOmpA is stabilized for membrane translocation by either purified E. coli trigger factor or canine signal recognition particle, Cell 54, 1003–1011.PubMedGoogle Scholar
  39. Crowley, K. S., Reinhart, G. D., Johnson, A. E. (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation, Cell 73, 1101–1115.PubMedGoogle Scholar
  40. Crowley, K. S., Liao, S., Worrell, V. E., Reinhart, G. D., Johnson, A. E. (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore, Cell 78, 461–471.PubMedGoogle Scholar
  41. Czarnota, G. J., Andrews, D. W., Farrow, N. A., Ottensmeyer, F. P. (1994) A three-dimensional structure for the signal-sequence-binding protein SRP54, J. Struct. Biol., in the press.Google Scholar
  42. Deshaies, R. J., Koch, B. D., Werner-Washburne, M., Craig, E. A., Schekman, R. (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides, Nature 332, 800–805.PubMedGoogle Scholar
  43. Dobberstein, B. (1994) Protein transport: On the beaten pathway, Nature 367, 599–600.PubMedGoogle Scholar
  44. Ernst, F., Hoffschulte, H. K., Thome-Kroner, B., Swidersky, U. E., Werner, P., Müller, M. (1994) Presursor-specific requirements for SecA, SecB, and d,,,,+- during protein export of Escherichia coli, J. Biol. Chem. 269, 12 840–12 845.Google Scholar
  45. Felici, E, Cesareni, G., Hughes, J. M. X. (1989) The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth, Mol. Cell. Biol. 9, 3260–3268.PubMedGoogle Scholar
  46. Franklin, A E, Hoffmann, N. E. (1993) Characterization of a chloroplast homologue of the 54-kDa subunit Of the signal recognition particle, J. Biol. Chem. 268, 22 175–22 180.Google Scholar
  47. Frydman, J., Nimmesgern, E., Ohtsuka, K., Hartl, F. U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones, Nature 370, 111–117.PubMedGoogle Scholar
  48. Garcia, P. D., Walter, P. (1988) Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not been terminated, J. Cell Biol. 106, 1043–1048.PubMedGoogle Scholar
  49. Geballe, A. P., Morris, D. R. (1994) Initiation codons within 5’-leaders of mRNAs as regulators of translation, Trends Biochem. Sci. 19, 159–164.PubMedGoogle Scholar
  50. Geiduschek, E. P., Tocchini-Valentini, G. P. (1988) Transcription by RNA polymerase Ili, Annu. Rev. Biochem. 57, 873–914.PubMedGoogle Scholar
  51. Gill, D. R., Hatfull, G. F., Salmond, G. P. C. (1986) A new cell division operon in Escherichia coli, Mol., Gen. Genet. 205, 134–145.Google Scholar
  52. Gilmore, R., Blobel, G., Walter, P. (1982a) Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane Lütcke (Eur. J. Biochem. 228) 71of a receptor for the signal recognition particle, J. Cell Biol. 95, 463–469.PubMedGoogle Scholar
  53. Gilmore, R., Walter, P., Blobel, G. (1982b) Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor, J. Cell Biol. 95, 470–477.PubMedGoogle Scholar
  54. Gilmore, R., Blobel, G. (1983) Transient involvement of signal recognition particle and its receptor in the microsomal membrane prior to protein translocation, Cell 35, 677–685.PubMedGoogle Scholar
  55. Gilmore, R., Blobel, G. (1985) Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants, Cell 42, 497–505.PubMedGoogle Scholar
  56. Gilmore, R (1993) Protein translocation across the endoplasmic reticulum: A tunnel with toll booths at entry and exit, Cell 75, 589–592.PubMedGoogle Scholar
  57. Görlich, D., Hartmann, E, Prehn, S., Rapoport, T. A. (1992a) A protein of the endoplasmic reticulum involved early in polypeptide translocation, Nature 357, 47–52.PubMedGoogle Scholar
  58. Görlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., Rapoport, T. A. (1992b) A mammalian homolog of Sec61p and SecYp is associated with ribosomes and nascent polypeptides during translocation, Cell 71, 489–503.PubMedGoogle Scholar
  59. Görlich, D., Rapoport, T. A. (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane, Cell 75, 615–630.PubMedGoogle Scholar
  60. Gundelfinger, E. D., Krause, E., Melli, M., Dobberstein, B. (1983) The organization of the 7SL RNA in the signal recognition particle, Nucleic Acids Res. 11, 7363–7374.PubMedGoogle Scholar
  61. Gundelfinger, E. D., Carlo, M. D., Zopf, D., Melli, M. (1984) Structure and evolution of the 7SL RNA component of the signal recognition particle, EMBO J. 3, 2325–2332.PubMedGoogle Scholar
  62. Hann, B. C., Poritz, M. A., Walter, M. A. (1989) Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth, J. Cell Biol. 109, 3223–3230.Google Scholar
  63. Hann, B. C., Stirling, C. J., Walter, P. (1992) SEC65 gene product is a subunit of the yeast signal recognition particle required for its integrity, Nature 356, 532–533.Google Scholar
  64. Hann, B. C., Walter, P. (1991) The signal recognition particle in S. cerevisiae, Cell 67, 131–144.PubMedGoogle Scholar
  65. Hartl, R.-U., Lecker, S., Schiebel, E., Hendrick, J. P., Wickner, W. (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane, Cell 63, 269–279.PubMedGoogle Scholar
  66. Hartmann, E., Sommer, T., Prehn, S., Görlich, D., Jentsch, S., Rapoport, T. A. (1994) Evolutionary conservation of components of the protein translocation complex, Nature 367, 654–657.PubMedGoogle Scholar
  67. He, X.-P., Bataillé, N., Fried, H. M. (1994) Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain, J. Cell Sci. 107, 903–912.PubMedGoogle Scholar
  68. Herz, J., Flint, N., Stanley, K., Frank, R., Dobberstein, B. (1991) The 68 KDa protein of signal recognition particle contains a glycine-rich region also found in certain RNA-binding proteins, FEBS Lett. 276, 103–107.Google Scholar
  69. Heus, H. A., Pardi, A. (1991) Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops, Science 253, 191–194.PubMedGoogle Scholar
  70. High, S., Dobberstein, B. (1991) The signal sequence of preprolactin interacts with the methionine-rich domain of the 54 kD protein of signal recognition particle, J. Cell Biol. 113, 229–233.PubMedGoogle Scholar
  71. High, S., Flint, N., Dobberstein, B. (1991) Requirements for the membrane insertion of signal-anchor type proteins, J. Cell BioL 113, 25–34.PubMedGoogle Scholar
  72. High, S., Andersen, S. S. L., Hartmann, G. D. E., Prehn, S., Rapoport, T. A., Dobberstein, B. (1993) Sec6lp is adjacent to nascent type I and type H signal-anchor proteins during their membrane insertion, J. Cell Biol. 121, 743–750.PubMedGoogle Scholar
  73. Hoffschulte, H. K., Drees, B., Millier, M. (1994) Identification of a soluble SecA/SecB complex by means of a subfractionated cell-free export system, J. Biol. Chem. 269, 12833–12839.PubMedGoogle Scholar
  74. Honda, K., Nakamura, K., Nishiguchi, M., Yamane, K. (1993) Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh, J. Bacteriol. 175, 4885–4894.PubMedGoogle Scholar
  75. Hortsch, M., Meyer, D. I. (1985) Immunochemical analysis of rough and smooth microsomes from rat liver. Segregation of docking protein in rough membranes, Eur. J. Biochem. 150, 559–564.PubMedGoogle Scholar
  76. Hortsch, M., Labeit, S., Meyer, D. I. (1988) Complete cDNA sequence coding for human docking protein, Nucleic Acids Res. 16, 361–362.PubMedGoogle Scholar
  77. Janiak, F., Walter, P., Johnson, A. E. (1992) Fluorescence-detected assembly of the signal recognition particle, Binding of the two SRP protein heterodimers to SRP RNA is noncooperative, Biochemistry 31, 5830–5840.PubMedGoogle Scholar
  78. Johnsson, N., Varshaysky, A. (1994) Ubiquitin-assisted dissection of protein transport across membranes, EMBO J. 13, 2686–2698.PubMedGoogle Scholar
  79. Kalies, K.-U., Görlich, D., Rapoport, T. A. (1994) Binding of ribosomes to the endoplasmic reticulum mediated by the Sec61p-complex, J. Cell Biol. 126, 925–934.PubMedGoogle Scholar
  80. Kleinert, H., Gladen, A., Geisler, M., Benecke, B.-J. (1988) Differential regulation of transcription of human 7 S K and 7 S L RNA genes, J. Biol. Chem. 263, 11511–11515.PubMedGoogle Scholar
  81. Krieg, U. C., Walter, P., Johnson, A. E. (1986) Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle, Proc. Nail Acad. Sci. USA 83, 8604–8608.Google Scholar
  82. Krolkiewicz, S., Sänger, H. L., Niesbach-Klösgen, U. (1994) Structural and functional characterisation of the signal recognition particle-specific 54-kD protein (SRP54) of tomato, Mol., Gen. Genet 245, 565–576.Google Scholar
  83. Kumamoto, C. A., Beckwith, J. (1983) Mutations in a new gene, secB, cause defective protein localization, J. Bacteriol. 154, 253–260.PubMedGoogle Scholar
  84. Kumamoto, C. A., Beckwith, J. (1985) Evidence for specificity at an early step in protein export in Escherichia coli, J. Bacteriol. 163, 267–274.PubMedGoogle Scholar
  85. Kumamoto, C. A., Chen, L., Fandl, J., Tai, P. C. (1989) Purification of the Escherichia coli secB gene product and demonstration of its activity in an in vitro protein translocation system, J. Biol. Chem. 264, 2242–2249.PubMedGoogle Scholar
  86. Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H., Rapoport, T. A. (1986) The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of signal recognition particle, Nature 320, 634–636.PubMedGoogle Scholar
  87. Larsen, N., Zwieb, C. (1991) SRP-RNA sequence alignment and secondary structure, Nucleic Acids Res. 19, 209–215.PubMedGoogle Scholar
  88. Larsen, N., Zwieb, C. (1993) The signal recognition particle database (SRPDB), Nucleic Acids Res. 21, 3019–3020.PubMedGoogle Scholar
  89. Lauffer, L., Garcia, P. D. Harkins, R. N., Coussens, L., Ullrich, A., Walter, P. (1985) Topology of signal recognition particle receptor in endoplasmic reticulum membrane, Nature 318, 334–338.PubMedGoogle Scholar
  90. LeBlanc, J. M., Infante, A. A. (1989) Association of 7SL RNA and an SRP-like particle with polysomes and endoplasmic reticulum in the developing sea urchin embryo, Dev. Biol. 132, 139–152.PubMedGoogle Scholar
  91. Lecker, S., Lill, R., Ziegelhoffer, T., Georgopoulos, C., Bassford P. J. Jr, Kumamoto, C. A., Wickner, W. (1989) Three pure chaperone proteins of Escherichia coli -SecB, trigger factor and GroEL -form soluble complexes with precursor proteins in vitro, EMBO J. 8, 2703–2709.PubMedGoogle Scholar
  92. Leffers, H. (1993) GenEMBL database, access no. X73459.Google Scholar
  93. Lindstrom, J. T., Chu, B., Belanger, F. C. (1993) Isolation and characterization of an Arabidopsis thaliana gene for the 54 kDa subunit of the signal recognition particle, Plant MoL BioL 23, 1265–1272.PubMedGoogle Scholar
  94. Lingelbach, K., Zwieb, C., Webb, J. R., Marshallsay, C., Hoben, P. J., Walter, P., Dobberstein, B. (1988) Isolation and characterization of a cDNA clone encoding the 19 kDa protein of signal recognition particle (SRP): expression and binding to 7SL RNA, Nucleic Acids Res. 16, 9431–9442.PubMedGoogle Scholar
  95. Lipp, J., Dobberstein, B., Haeuptle, M.-T. (1987) Signal recognition particle arrests elongation of nascent secretory and membrane proteins at multiple sites in a transient manner, J. BioL Chem. 262, 1680–1684.PubMedGoogle Scholar
  96. Luirink, J., High, S., Wood, H., Giner, A., Tollervey, D., Dobberstein, B. (1992) Signal sequence recognition by an E. coli ribonucleoprotein particle, Nature 359, 741–743.PubMedGoogle Scholar
  97. Luirink, J., ten Hagen-Jongman, C. M., v. d. Weijden, C. C., Oudega, B., High, S., Dobberstein, B., Kusters, R. (1994) An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY, EMBO J. 13, 2289–2296.Google Scholar
  98. Lütcke, H., High, S., Römisch, K., Ashford, A. J., Dobberstein, B. (1992) The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences, EMBO J. 11, 1543–1551.PubMedGoogle Scholar
  99. Lütcke, H., Prehn, S., Ashford, A. J., Remus, M., Frank, R., Dobberstein, B. (1993) Assembly of the 68- and 72-kD proteins of signal recognition particle with 7S RNA, J. Cell Biol. 121, 977–985.PubMedGoogle Scholar
  100. Makalowski, W., Mitchell, G. A., Labuda, D. (1994) Alu sequences in the coding region of mRNA: a source of protein variability, Trends Genet. 10, 188–193.PubMedGoogle Scholar
  101. Malkin, L. I., Rich, A. (1967) Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding, J. Mol. Biol. 26, 329–346.PubMedGoogle Scholar
  102. McNair, A., Zemzoumi, K., Lütcke, H., Guillerm, C., Boitelle, A., Capron, A., Dissous, C (1994) Cloning of a signal-recognitionparticle subunit of Schistosoma mansoni, Parasitol. Res., in the press.Google Scholar
  103. Meyer, D. I., Krause, E., Dobberstein, B. (1982) Secretory protein translocation across membranes -the role of `docking protein’, Nature 297, 647–650.PubMedGoogle Scholar
  104. Miller, J. D., Bernstein. H. D., Walter, P. (1994) Interaction of E. coli Ffh/4.5S ribonucleoprotein and FtsY mimics that of mammalian signal recognition particle and its receptor, Nature 367, 657–659.PubMedGoogle Scholar
  105. Miller, J. D., Wilhelm, H., Gierasch, L., Gilmore, R., Walter, P. (1993) GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation, Nature 366, 351–354.PubMedGoogle Scholar
  106. Mothes, W., Prehn, S., Rapoport, T. A. (1994) Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane, EMBO J. 13, 3973–3982.PubMedGoogle Scholar
  107. Nakamura, K., Imai, Y., Nakamura, A., Yamane, K. (1992a) Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA, J. Bacteriol. 174, 2185–2192.PubMedGoogle Scholar
  108. Nakamura, K., Minemura, M., Nishiguchi, M., Honda, K., Nakamura, A., Yamane, K. (1992b) Conserved residues and secondary structure found in small cytoplasmic RNAs from thirteen Bacillus species, Nucleic Acids Res. 20, 5227–5228.PubMedGoogle Scholar
  109. Notwehr, S. F., Gordon, J. I. (1990) Targeting of proteins into the eukaryotic secretory pathway: signal peptide structure/function relationships, BioEssays 12, 479–484.Google Scholar
  110. O’Neil, K. T., DeGrado, W. F. (1990) How calmodulin binds its targets: sequence independent recognition of amphipathic a-helices, Trends Biochem. Sci. 15, 59–64.PubMedGoogle Scholar
  111. Ogg, S. C., Nunnari, J. M., Miller, J. D., Walter, P. (1992a) in The role of GTP in protein targeting to the endoplasmic reticulum (R. L. W. Neupert, ed.) 129–135, Elsevier Science Publishers, New York..Google Scholar
  112. Ogg, S. C., Poritz, M. A., Walter, P. (1992b) Signal recognition particle receptor is important for cell growth and protein secretion in Saccharomyces cerevisiae, Mol. Biol. Cell 3, 895–911.PubMedGoogle Scholar
  113. Okada, N. (1990) Transfer RNA-like structure of the human Alu family: Implications of its generation mechanism and posssible functions, J. Mol. Evol. 31, 500–510.PubMedGoogle Scholar
  114. Okun, M. M., Shields, D. (1992) Translocation of preproinsulin across the endoplasmic reticulum membrane, J. Biol. Chem. 267, 11476–11482.PubMedGoogle Scholar
  115. Phillips, G. J., Silhavy, T. J. (1992) The E. coli ffh gene is necessary for viability and efficient protein export, Nature 359, 744–746.PubMedGoogle Scholar
  116. Poritz, M. A., Siegel, V., Hansen, W., Walter, P. (1988a) Small ribonucleoproteins in Schizosaccharornyces pombe and Yarrowia lipolytica homologous to signal recognition particle, Proc. Natl Acad. Sci. USA 85, 4315–4319.PubMedGoogle Scholar
  117. Poritz, M. A., Strub, K., Walter, P. (1988b) Human SRP RNA and E. coli 4.5S RNA contain a highly homologous structural domain, Cell 55,4–6.Google Scholar
  118. Poritz, M. A., Bernstein, H. D., Strub, K., Zopf, D., Wilhelm, H., Walter, P. (1990) An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle, Science 250,1111–1117.Google Scholar
  119. Prehn, S., Wiedmann, M., Rapoport, T. A., Zwieb, C. (1987) Protein translocation across wheat germ microsomal membranes requires an SRP-like component, EMBO J. 6, 2093–2097.PubMedGoogle Scholar
  120. Pugsley, A. P (1993) The complete general secretory pathway in gram-negative bacteria, Microbiol. Rev. 57, 50–108.PubMedGoogle Scholar
  121. Ramirez, C., Matheson, A. T. (1991) A gene in the archaebacterium Sulfolobus solfataricus that codes for a protein equivalent to the alpha subunits of the signal recognition particle receptor in eucaryotes, Mol. Microbiol. 5, 1687–1693.Google Scholar
  122. Randall, L L, Topping, T. B., Hardy, S. J. S. (1990) No specific recognition of leader peptide by SecB, a chaperone involved in protein export, Science 248, 860–863.PubMedGoogle Scholar
  123. Rapiejko, P. J., Gilmore, R. (1992) Protein translocation across the ER requires a functional GTP binding site in the a subunit of the signal recognition particle receptor, J. Cell Biol. 117, 493–503.PubMedGoogle Scholar
  124. Rapoport, T. A., Heinrich, R., Walter, P., Schulmeister, T. (1987) Mathematical modeling of the effects of the signal recognition particle on translation and translocation of proteins across the endoplasmic reticulum membrane, J. Mol. Biol. 195, 621–636.PubMedGoogle Scholar
  125. Rapoport, T. A. (1992) Transport of proteins across the endoplasmic reticulum membrane, Science 258, 931–936.PubMedGoogle Scholar
  126. Ribes, V., Römisch, K., Giner, A., Dobberstein, B. , Tollervey, D. (1990) E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle, Cell,63 591–600.PubMedGoogle Scholar
  127. Römisch, K., Webb, J., Herz, J., Prehn, S., Frank, R., Vingron, M., Dobberstein, B. (1989) Homology of 54 K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains, Nature 340, 478–482.PubMedGoogle Scholar
  128. Römisch, K (1990) Struktur und Funktion des 54 kD Proteins des Signalerkennungspartikels, PhD Thesis, Ruprecht-Karls-Universität, Heidelberg.Google Scholar
  129. Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H., Dobberstein, B. (1990) The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain, J. Cell Biol. 111, 1793–1802.PubMedGoogle Scholar
  130. Samuelsson, T. (1992) A Mycoplasma protein homologous to mammalian SRP54 recognizes a highly conserved domain of SRP RNA, Nucleic Acids Res. 20, 5763–5770.PubMedGoogle Scholar
  131. Samuelsson, T., Olsson, M. (1993) GTPase activity of a bacterial SRPlike complex, Nucleic Acids Res. 21, 847–853.PubMedGoogle Scholar
  132. Sanchez, M., Beckerich, J. M., Gaillardin, C., Dominguez, A. (1993) EMBO/GenBank access no. Z22570.Google Scholar
  133. Sanz. P., Meyer, D. I. (1988) Signal recognition particle (SRP) stabilizes the translocation-competent conformation of pre-secretory proteins, EMBO J. 7, 3553–3557.Google Scholar
  134. Savitz, A. J., Meyer, D. I. (1990) Identification of the ribosome recep- tor of the rough endoplasmic reticulum, Nature 346, 540–544.PubMedGoogle Scholar
  135. Savitz, A. J., Meyer, D. I. (1993) 180-kD ribosome receptor is essential for both ribosome binding and protein translocation, J. Cell Biol. 120, 853–863.Google Scholar
  136. Schlenstedt, G., Gudmundsson, G. H., Boman, H. G., Zimmermann, R. (1990) A large presecretory protin translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes, J. Biol. Chem. 265, 13960–13968.PubMedGoogle Scholar
  137. Scoulica, E., Krause, E., Meese, K., Dobberstein, B. (1987) Disassembly and domain structure of the proteins in the signal-recognition particle, Eur. J. Biochem. 163, 519–528.PubMedGoogle Scholar
  138. Selinger, D., Brennwald, P., Liao, X., Wise, J. A. (1993) Identification of RNA sequences and structural elements required for assembly of fission yeast SRP54 protein with signal recognition particle, Mol. Cell. Biol. 13, 1353–1362.PubMedGoogle Scholar
  139. Siegel, V., Walter, P. (1985) Elongation arrest is not a prerequisite for secretory protein translocation across the microsomal membrane, J. Cell Biol. 100, 1913–1921.PubMedGoogle Scholar
  140. Siegel, V., Walter, P. (1986) Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact, Nature 320, 81–84.PubMedGoogle Scholar
  141. Siegel, V., Walter, P. (1988a) Binding sites of the 19-kDa and 68/ 72-kDa signal recognition particle (SRP) proteins on SRP RNA as determined by protein-RNA `footprinting’, Proc. Natl Acad. Sci. USA 85, 1801–1805.PubMedGoogle Scholar
  142. Siegel, V., Walter, P. (1988b) Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: Analysis of biochemical mutants of SRP, Cell 52, 39–49.PubMedGoogle Scholar
  143. Sinnett, D., Richter, C., Deragon, J.-M., Labuda, D. (1991) Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units, J. Biol. Chem. 266, 8675–8678.Google Scholar
  144. Stirling, C. J., Hewitt, E. W. (1992) The S. cerevisiae SEC65 gene encodes a component of yeast signal recognition particle with homology to human SRP19, Nature 356, 534–537.PubMedGoogle Scholar
  145. Strub, K., Walter, P. (1990) Assembly of the Alu domain of the signal recognition particle (SRP): Dimerization of the two protein components is required for efficient binding to SRP RNA, Mol. Cell. Biol. 10, 777–784.PubMedGoogle Scholar
  146. Strub, K., Moss, J., Walter, P. (1991) Binding sites of the 9 and 14 kD heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution, Mol. Cell. Biol. 11, 3949–3959.PubMedGoogle Scholar
  147. Strub, K., Wolff, N., Oertle, S. (1993) in The Alu-domain of the signal recognition particle (F. E. K. H. Nierhaus, A. R. Subramanian, V. A. Erdmann, B. Wittmann-Liebold, eds.) pp. 635–645, Plenum Press, New York.Google Scholar
  148. Struck, J. C. R., Toschka, H. Y., Specht, T., Erdmann, V A. (1988a) Common structural features between eukaryotic 7SL RNAs, eubacterial 4.5S RNA and scRNA and archaebacterial 7S RNA, Nucleic Acids Res. 16, 7740.PubMedGoogle Scholar
  149. Struck, J. C. R., Vogel, D. W., Ulbrich, N., Erdmann, V. A. (1988b) The Bacillus subtilis scRNA is related to the 4.55 RNA from Escherichia coli, Nucleic Acids Res. 16, 2719.PubMedGoogle Scholar
  150. Taha, M. K., So, M., Seifert, S., Billyard, E., Marshal, C. (1988) Pilin expression in Neisseria gonorrhoeae is under both positive and negative transcriptional control, EMBO J. 7, 4367–4378.PubMedGoogle Scholar
  151. Tajima, S., Lauffer, L., Rath, V. L., Walter, R (1986) The signal recognition particle receptor is a complex that contains two distinct polypeptide chains, J. Cell Biol. 103, 1167–1178.PubMedGoogle Scholar
  152. Tazawa, S., Unuma, M., Tondokoro, J., Asano, Y, Ohsumi, T., Ichimura, T., Sugano, H. (1991) Identification of a membrane protein responsible for ribosome binding in rough microsomal membranes, J. Biochem. (Tokyo) 109, 89–98.Google Scholar
  153. Ullu, E., Melli, M. (1982) Cloning and characterization of cDNA copies of the 7S RNAs of HeLa cells, Nucleic Acids Res. 10, 2209–2223.PubMedGoogle Scholar
  154. Ullu, E., Murphy, S., Melli, M. (1982) Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an Alu sequence, Cell 29, 195–202.PubMedGoogle Scholar
  155. Ullu, E., Tschudi, C. (1984) Alu sequences are processed 7SL RNA genes, Nature 312, 171–172.PubMedGoogle Scholar
  156. Ullu, E., Weiner, A. M. (1984) Human genes and pseudogenes for the 7SL RNA component of signal recognition particle, EMBO J. 3, 3303–3310.PubMedGoogle Scholar
  157. Ullu, E., Weiner, A. M. (1985) Upstream sequences modulate the internal promoter of the human 7SL RNA gene, Nature 318, 371–374.PubMedGoogle Scholar
  158. von Heijne, G. (1988) Transcending the impenetrable: how proteins come to terms with membranes, Biochim. Biophys. Acta 974, 307–333.Google Scholar
  159. von Heijne, G. (1990) The signal peptide, J. Membrane Biol. 115, 195–201.Google Scholar
  160. Walker, T. A., Pace, N. R., Erikson, R. L., Erikson, E., Behr, F. (1974) The 7S RNA common to oncornaviruses and normal cells is associated with polyribosomes, Proc. Natl Acad. Sci. USA 71, 3390–3394.PubMedGoogle Scholar
  161. Walter, P., Ibrahimi, I., Blobel, G. (1981) Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory protein, J. Cell Biol. 91, 545–550.PubMedGoogle Scholar
  162. Walter, P., Blobel, G. (1980) Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum, Proc. Natl Acad. Sci. USA 77, 7112–7116.PubMedGoogle Scholar
  163. Walter, P., Blobel, G. (1981) Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes, J. Cell Biol. 91, 557–561.PubMedGoogle Scholar
  164. Walter, P., Blobel, G. (1982) Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum, Nature 299, 691–698.PubMedGoogle Scholar
  165. Walter, R., Blobel, G. (1983a) Disassembly and reconstitution of signal recognition particle, Cell 34, 525–533.PubMedGoogle Scholar
  166. Walter, P., Blobel, G. (1983b) Subcellular distribution of signal recognition particle and 7SL-RNA determined with polypeptide-specific antibodies and complementary DNA probe, J. Cell Biol. 97, 1693–1699.PubMedGoogle Scholar
  167. Watanabe, M., Blobel, G. (1989) Cytosolic factor purified from Escherichia coli is necessary and sufficient for the export of a preprotein and is a homotetramer of SecB, Proc. Natl Acad. Sci. USA 86, 2728–2732.PubMedGoogle Scholar
  168. Weiner, A. M (1980) An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome, Cell 22, 209–218.PubMedGoogle Scholar
  169. Weiner, A. M., Deininger, P. L., Efstratiadis, A. (1986) Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information, Annu. Rev. Biochem. 55, 631–661.PubMedGoogle Scholar
  170. Weiss, J. B., Ray, P. H., Bassford, P. J (1988) Purified SecB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro, Proc. Natl Acad. Sci. USA 85, 8978–8982.Google Scholar
  171. Wickner, W., Driessen, A. J. M., Hard, F.-U. (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane, Annu. Rev. Biochem. 60, 101–124.PubMedGoogle Scholar
  172. Wiedmann, M., Kurzchalia, T. V., Bielka, H., Rapoport, T. A. (1987a) Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking, J. Cell Biol. 104, 201–208.PubMedGoogle Scholar
  173. Wiedmann, M., Kurzchalia, T. V., Hartmann, E., Rapoport, T. A. (1987b) A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328, 830–833.PubMedGoogle Scholar
  174. Wiedmann, B., Sakai, H., Davis, T. A., Wiedmann, M. (1994) A protein complex required for signal-sequence-specific sorting and translocation, Nature 370, 434–440.PubMedGoogle Scholar
  175. Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J., Coulson, A., Craxton, M. et al. (1994) 2.2 Mb of contiguous nucleotide sequence from Chromosome III of C. elegans, Nature 368 32–38.Google Scholar
  176. Woese, C. R., Kandler, O., Wheels, M. L. (1990) Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eukarya, Proc. Natl Acad. Sci. USA 87, 4576–4579.PubMedGoogle Scholar
  177. Wolin, S., Walter, P. (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA, EMBO J. 7, 3559–3569.PubMedGoogle Scholar
  178. Wolin, S. L., Walter, P. (1989) Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate, J. Cell Biol. 109, 2617–2622.PubMedGoogle Scholar
  179. Wood, H., Luirink, J., Tollervey, D. (1992) Evolutionary conserved nucleotides within the E. coli 4.5S RNA are required for association with P48 in vitro and for optimal function in vivo, Nucleic Acids Res. 20, 5919–5925.Google Scholar
  180. Zapp, M. L. (1992) RNA nucleocytoplasmic transport, Semin. Cell Biol. 3, 289–297.PubMedGoogle Scholar
  181. Zieve, G., Penman, S. (1976) Small RNA species of the HeLa cell: Metabolism and subcellular localization, Cell 8, 19–31.PubMedGoogle Scholar
  182. Zieve, G., Benecke, B.-J., Penman, S. (1977) Synthesis of two classes of small RNA species in vivo and in vitro, Biochemistry 16, 4520–4525.Google Scholar
  183. Zopf, D., Bernstein, H. D., Johnson, A. E., Walter, P. (1990) The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be cross-linked to a signal sequence, EMBO J. 9, 4511–4517.PubMedGoogle Scholar
  184. Zopf, D., Bernstein, H. D., Walter, R. (1993) GTPase domain of the 54-kD subunit of the mammalian signal recognition particle is required for protein translocation but not for signal-sequence-binding, J. Cell Biol. 120, 1113–1121.PubMedGoogle Scholar
  185. Zwieb, C., Schüler, D. (1989) Low resolution three-dimensional models of the 7SL RNA of the signal recognition particle, based on an intramolecular cross-link introduced by mild irradiation with ultraviolet light, Biochem. Cell Biol. 67, 434–442.PubMedGoogle Scholar
  186. Zwieb, C (1985) The secondary structure of the 7SL RNA in the signal recognition particle: functional implications, Nucleic Acids Res. 13, 6105–6124.PubMedGoogle Scholar
  187. Zwieb, C. (1991a) A basic region neighboring the lysine-rich C-terminus of protein SRP19 is required for binding to signal recognition particle RNA, Biochem, Cell Biol. 69, 649–654.Google Scholar
  188. Zwieb, C. (1991b) Interaction of protein SRP19 with signal recognition particle RNA lacking individual RNA helices, Nucleic Acids Res. 19, 2955–2960.PubMedGoogle Scholar
  189. Zwieb, C. (1992) Recognition of a tetranucleotide loop of signal recognition particle RNA by protein SRP19, J. Biol. Chem. 267, 15650–15656.Google Scholar
  190. Zwieb, C. (1994) Site-directed mutagenesis of signal-recognition particle RNA; Identification of the nucleotides in helix 8 required for interaction with protein SRP19, Eur. J. Biochem. 222, 885–890.PubMedGoogle Scholar

Copyright information

© FEBS 1995

Authors and Affiliations

  • Henrich Lütcke
    • 1
  1. 1.Zentrum für Molekulare Biologie Heidelberg (ZMBH)HeidelbergGermany

Personalised recommendations