Advertisement

EJB Reviews pp 163-189 | Cite as

Biosynthesis and biological activities of lantibiotics with unique post-translational modifications

  • Hans-Georg Sahl
  • Ralph W. Jack
  • Gabriele Bierbaum
Part of the European Journal of Biochemistry book series (EJB REVIEWS, volume 1995)

Abstract

Lantibiotics are biologically active peptides which contain the thioether amino acid lanthionine as well as several other modified amino acids. They can be broadly divided into two groups on the basis of their structures: type-A lantibiotics are elongated, amphiphilic peptides, while type-B lantibiotics are compact and globular. In the last decade there has been a marked increase in research interest in these peptides due both to the novel biosynthetic mechanisms by which they are produced, as well as to their potential applications. Lantibiotics are synthesised on the ribosome as a prepeptide which undergoes several post-translational modification events, including dehydration of specific hydroxyl amino acids to form dehydroamino acids, addition of neighbouring sulfhydryl groups to form thioethers and, in specific cases, other modifications such as introduction of d-alanine residues from l-serine, formation of lysinoalanine bridges, formation of novel N-terminal blocking groups and oxidative decarboxylation of a C-terminal cysteine. The genetic elements responsible for these specific modification reactions encode unique enzymes with hitherto unknown reaction mechanisms. Production of these peptides also requires accessory proteins including processing proteases, translocators of the ATP-binding cassette transporter family, regulatory proteins and dedicated producer self-protection mechanisms. While the principle biological activity of most type-B lantibiotics appears to be directed at the inhibition of enzyme functions, the type-A lantibiotics kill bacterial cells by forming pores in the cytoplasmic membrane.

Keywords

Lantibiotics structures and conformations genetics and biosynthesis modes of action antibiotic peptides 

Abbreviations

Lan

lanthionine

MeLan

methyllanthionine

Dha

2,3-didehydroalanine

Dhb

2,3-didehydrobutyrine

Me2SO

dimethylsulfoxide

Δψ

transmembrane electrical potential

MIC

minimal inhibitory concentration

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abee, T., Gao, F. H. Konings, W. N. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 373–385, ESCOM, Leiden.Google Scholar
  2. Allgaier, H., Jung, G., Werner, R. G., Schneider, U. Zähner, H. (1986) Eur. J. Biochem. 160, 9–22.PubMedCrossRefGoogle Scholar
  3. Arioli, V., Berti, M. Silvestri, L. G. (1976) J. Antibiot. 29, 511–515.PubMedGoogle Scholar
  4. Augustin, J. (1991) PhD thesis, University of Tübingen.Google Scholar
  5. Augustin, J., Rosenstein, R., Kupke, T., Schneider, U., Schnell, N., Engelke, G., Entian, K.-D. Götz, F. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 277–286, ESCOM, Leiden.Google Scholar
  6. Augustin, J., Rosenstein, R., Wieland, B., Schneider, U., Schnell, N., Engelke, G., Entian, K.-D. Götz, F. (1992) Eur. J. Biochem. 204, 1149–1154.PubMedCrossRefGoogle Scholar
  7. Banerjee, S. Hansen, J. N. (1988) J. Biol. Chem. 263, 9508–9514.PubMedGoogle Scholar
  8. Bayer, A., Freund, S., Nicholson, G. Jung, G. (1993) Angew. Chem. Int. Ed. Engl. 32, 1336–1339.CrossRefGoogle Scholar
  9. Beck-Sickinger, A. G. Jung, G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 218–230, ESCOM, Leiden.Google Scholar
  10. Benedict, R. G., Dvonch, W., Shotwell, O. L., Pridham, T. G. Linden felser, L. A. (1952) Antibiot. Chemother. 2, 591–594.Google Scholar
  11. Benz, R. Bauer, K. (1988) Eur. J. Biochem 176, 1–19.PubMedCrossRefGoogle Scholar
  12. Benz, R., Jung, G. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 359–372, ESCOM, Leiden.Google Scholar
  13. Berridge, N. J., Newton, G. G. F. Abraham, E. P. (1952) Biochem. J. 52, 529–535.PubMedGoogle Scholar
  14. Bierbaum, G. Sahl, H.-G. (1985) Arch. Micr-obiol. 141, 249–254.CrossRefGoogle Scholar
  15. Bierbaum, G. Sahl, H.-G. (1987) J. Bacteriol. 169, 5452–5458.PubMedGoogle Scholar
  16. Bierbaum, G. Sahl, H.-G. (1988) FEMS Microbiol. Lett. 58, 223–228.Google Scholar
  17. Bierbaum, G. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 386–396, ESCOM, Leiden.Google Scholar
  18. Bierbaum, G. Sahl, H.-G. (1993) Zentralbi. Bakteriol. 278, 1–22.CrossRefGoogle Scholar
  19. Bierbaum, G., Reis, M., Szekat, C. Sahl, H.-G. (1994) Appl. Env. Microbiol. 60, 4332–4338.Google Scholar
  20. Bierbaum, G, Brötz, H., Koller, H.-P. Sahl, H.-G. (1995) FEMS Microbiol. Lett. 127, 121–126.PubMedCrossRefGoogle Scholar
  21. Boman, H. G., Marsh, J. Goode J. A. (eds) (1994) Ciba Found. Symp. 186.Google Scholar
  22. Boman, H. G. (1995) Annu. Rev. Immunol. 13, 61–92.PubMedCrossRefGoogle Scholar
  23. Breil, B. T., Ludden, P. W. Triplett, E. W. (1993) J. Bacteriol. 175, 3693–3702.PubMedGoogle Scholar
  24. Brock, T. D. Davie, J. M. (1963) J. Bacteriol. 86, 708–712.PubMedGoogle Scholar
  25. Brötz, H., Bierbaum, G., Markus, A., Molitor, E. Sahl, H.-G. (1995) Antimicrob. Agents Chemother. 39, 714–719.PubMedGoogle Scholar
  26. Buchman, G. W., Banerjee, S. Hansen, J. N. (1988) J. Biol. Chem. 263, 16260–16266.PubMedGoogle Scholar
  27. Bycroft, B. W., Chan, W. C. Roberts, G. C. K. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 204–217, ESCOM, Leiden.Google Scholar
  28. Chan, W. C., Bycroft, B. W., Lian, L.-Y. Roberts, G. C. K. (1989) FEBS Lett. 252, 29–36.CrossRefGoogle Scholar
  29. Chan, W. C., Bycroft, B. W., Leyland, M. L., Lian, L.-Y., Yang, J. C. Roberts, G. C. K. (1992) FEBS Lett. 300, 56–62.PubMedCrossRefGoogle Scholar
  30. Chan, W. C., Bycroft, B. W., Leyland, M. L., Lian, L.-Y. Roberts, G. C. K. (1993) Biochem. J. 291, 23–27.PubMedGoogle Scholar
  31. Chatterjee, S., Chatterjee, D. K., Jani, R. H., Blumbach, J., Ganguli, B. N., Kiesel, N., Limbert, M. Seibert, G. (1992a) J. Antibiot. 45, 839–845.PubMedGoogle Scholar
  32. Chatterjee, S., Chatterjee, S., Lad, S. J., Phansalkar, M. S., Rupp, R. H., Ganguli, B. N., Fehlhaber, H.-W. Kogler, H. (1992b) J. Antibiot. 45, 832–838.PubMedGoogle Scholar
  33. Chen, L. Tai, R C. (1987) J. Bacteriol 169, 2373–2379.PubMedGoogle Scholar
  34. Chikindas, M. L., Garcia-Garcerâ, M. J., Driessen, A. J. M., Ledeboer, A. M., Nissen-Meyer, J., Nes, I. F., Abee, T., Konings, W. N. Venema, G. (1993) Appl. Environ. Microbiol. 59, 3577–3584.PubMedGoogle Scholar
  35. Choung, S.-Y., Kobayashi, T., Inoue, J.-I., Takemoto, K., Ishitsuka, H. Inoue, K. (1988a) Biochim. Biophys. Acta 940, 171–179.PubMedCrossRefGoogle Scholar
  36. Choung, S.-Y., Kobayashi, T., Takemoto, K., Ishitsuka, H. & Inoue, K. (1988b) Biochim. Biophys. Acta 940, 180–187.CrossRefGoogle Scholar
  37. Chung, Y. J. Hansen, J. N. (1992) J. Bacteriol. 174, 6699–6702.PubMedGoogle Scholar
  38. Chung, Y. J., Steen, M. T. Hansen, J. N. (1992) J. Bacteriol. 174, 1417–1422.PubMedGoogle Scholar
  39. Clejan, S., Guffanti, A. A., Cohen, M. A. Krulwich, T. A. (1989) J. Bacteriol. 171, 1744–1746.PubMedGoogle Scholar
  40. Delves-Broughton, J. (1990) Food Technol. 44, 100–117.Google Scholar
  41. Dempster, R. P. Tagg, J. R. (1982) Arch. Oral Biol. 27, 151–157.PubMedCrossRefGoogle Scholar
  42. De Vos, W. M., Jung, G. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 457–463, ESCOM, Leiden.Google Scholar
  43. De Vos, W. M., Mulders, J. W. M., Siezen, R. J., Hugenholtz, J. Kuipers, O. P. (1993) Appl. Env. Microbiol. 59, 213–218.Google Scholar
  44. De Vuyst, L. Vandamme, E. J. (1992) J. Gen. Microbiol. 138, 571–578.PubMedGoogle Scholar
  45. De Vuyst, L. Vandamme, E. J. (1993) Appl. Microbiol. Biotechnol. 40, 17–22.CrossRefGoogle Scholar
  46. De Vuyst, L. Vandamme, E. J. (eds) (1994) Bacteriocins of lactic acid bacteria, Chapman Hall, London.Google Scholar
  47. Dood, H. M., Horn, N. Gasson, M. J. (1990) J. Gen. Microbiol. 136, 555–566.Google Scholar
  48. Dodd, H. M., Horn, N., Hao, Z. Gasson, M. J. (1992) Appl. Env. Microbiol. 58, 3683–3693.Google Scholar
  49. Dodd, H. M. Gasson, M. J. (1994) in Genetics and biotechnology of lactic acid bacteria (Gasson, M. J. De Vos, W. M., eds) pp. 211–251, Chapman Hall, London.CrossRefGoogle Scholar
  50. Driessen, A. J. M., Van den Hooven, H. W., Kuiper, W., Van de Kamp, M., Sahl, H.-G., Konings, R. N. H. Konings, W. N. (1995) Biochemistry 34, 1606–1614.PubMedCrossRefGoogle Scholar
  51. Dunkley, E. A. Jr, Clejan, S., Guffanti, A. A. Krulwich, T. A. (1988) Biochim. Biophys. Acta 943, 13–18.PubMedCrossRefGoogle Scholar
  52. Engelke, G., Gutowski-Eckel, Z., Hammelmann, M. Entian, K.-D. (1992) Appl. Env. Microbiol. 58, 3730–3743.Google Scholar
  53. Engelke, G., Gutowski-Eckel, Z., Kiesau, P., Siegers, K., Hammelmann, M. Entian, K.-D. (1994) Appl. Env. Microbiol. 60, 814–825.Google Scholar
  54. Entian, K.-D. Kaletta, C. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 303–308, ESCOM, Leiden.Google Scholar
  55. Ersfeld-Dressen, H., Sahl, H.-G. Brandis, H. (1984) J. Gen. Microbiol. 130, 3029–3035.PubMedGoogle Scholar
  56. Fath, M. J., Skvirsky, R. C. Kolter, R. (1991) J. Bacteriol. 173, 7549–7556.PubMedGoogle Scholar
  57. Fath, M. J., Skvirsky, R., Gilson, L., Mahanty, H. K. Kolter, R. (1992) in Bacteriocins, microcins and lantibiotics (James, R., Lazdunski, C. Pattus, F., eds) pp. 331–348, Springer, Berlin.CrossRefGoogle Scholar
  58. Fath, M. J. Kolter, R. (1993) Microbiol. Rev. 57, 995–1017.PubMedGoogle Scholar
  59. Fath, M. J., Zhang, L. H., Rush, J. Kolter, R. (1994) Biochemistry 33, 6911–6917.PubMedCrossRefGoogle Scholar
  60. Fredenhagen, A., Fendrich, G., Märki, F, Märki, W., Groner, J., Raschdorf, F. Peter, H. H. (1990) J. Antibiot. 43, 1403–1412.PubMedGoogle Scholar
  61. Fredenhagen, A., Märki, F., Fendrich, G., Märki, W., Groner, J., Van Oostrum, J., Raschdorf, F. Peter, H. H. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 131–140, ESCOM, Leiden.Google Scholar
  62. Freund, S., Jung, G., Gutbrod, O., Folkers, G., Gibbons, W. A., Allgaier, H. Werner, R. (1991a) Biopolymers 31, 803–811.PubMedCrossRefGoogle Scholar
  63. Freund, S., Jung, G., Gutbrod, O., Folkers, G. Gibbons, W. A. (1991b) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 91102, ESCOM, Leiden.Google Scholar
  64. Freund, S., Jung, G., Gibbons, W. A. Sahl, H.-G. (1991c) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 103–112, ESCOM, Leiden.Google Scholar
  65. Freund, S. Jung, G. (1992) in Bacteriocins, microcins and lantibiotics (James, R., Lazdunski, C. Pattus, F., eds) pp. 75–92, Springer, Berlin.CrossRefGoogle Scholar
  66. Gao, F. H., Abee, T. Konings, W. N. (1991) Appl. Environ. Microbiol. 57, 2164–2170.PubMedGoogle Scholar
  67. Garcerâ, M. J. G., Elferink, M. G. L., Driessen, A. J. M. Konings, W. N. (1993) Eur. J. Biochem 212, 417–422.PubMedCrossRefGoogle Scholar
  68. Garrido, M. C., Herrero, M., Kolter, R. Moreno, F. (1988) EMBO J. 7, 1853–1862.PubMedGoogle Scholar
  69. Gasson, M. J. (1984) FEMS Microbiol. Lett. 21, 7–10.CrossRefGoogle Scholar
  70. Gilmore, M. S., Segarra, R. A. Booth, M. C. (1990) Infect. Immun. 58, 3914–3923.PubMedGoogle Scholar
  71. Gilmore, M. S., Segarra, R. A., Booth, M. C., Bogie, C. P., Hall, L. R Clewell, D. B. (1994) J. Bacteriol. 176, 7335–7344.PubMedGoogle Scholar
  72. Goodman, M., Palmer, D. E., Mierke, D., Ro, S., Nunami, K., Wakamiya, T., Fukase, K., Horimoto, S., Kitazawa, M., Fujita, H., Kubo, A. Shiba, T. (1991) in Nisin and novel lantibiotics (Jung, G. Sall, H.-G., eds) pp. 59–75, ESCOM, Leiden.Google Scholar
  73. Graeffe, T., Rintala, H., Paulin, L. Saris, P. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 260–268, ESCOM, Leiden.Google Scholar
  74. Gratia, A. (1925) C. R. Soc. Biol. 93, 1040–1041.Google Scholar
  75. Gross, E. Morell, J. L. (1970) J. Am. Chem. Soc. 92, 2919–2920.PubMedCrossRefGoogle Scholar
  76. Gross, E. Morell, J. L. (1971) J. Am. Chem. Soc. 93, 4634–4635.PubMedCrossRefGoogle Scholar
  77. Gross, E., Kiltz, H. H. Nebelin, E. (1973) Hoppe-Seyler’s Z. Physiol. Chem. 354, 810–812.PubMedGoogle Scholar
  78. Gross, E. (1977) Adv. Exp. Med. Biol. B 86, 131–153.Google Scholar
  79. Gutowski-Eckel, Z., Klein, C., Siegers, K., Bohm, K., Hammelmann, M. Entian, K.-D. (1994) Appl. Env. Microbiol. 60, 1–11.Google Scholar
  80. Hansen, J. N., Chung, Y. J., Liu, W. Steen, M. T. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 287–302, ESCOM, Leiden.Google Scholar
  81. Hansen, J. N. (1993) Annu. Rev. Microbiol. 47, 535–564.PubMedCrossRefGoogle Scholar
  82. Havarstein, L. S., Holo, H. Nes, I. F. (1994) Microbiology 140, 2383–2389.PubMedCrossRefGoogle Scholar
  83. Higgins, C. F. (1992) Annu. Rev. Cell Biol. 8, 67–113.PubMedCrossRefGoogle Scholar
  84. Hirs, C. H. W. (1956) J. Biol. Chem. 219, 611–617.PubMedGoogle Scholar
  85. Hoover, D. G. Steenson, L. R. (eds) (1993) Bacteriocins of lactic acid bacteria, Academic Press, San Diego CA.Google Scholar
  86. Homer, T., Ungermann, V., Zähner, H., Fiedler, H.-E, Utz, R., Kellner, R. & Jung, G. (1990) Appl. Microbiol. Biotechnol. 32, 511–517.Google Scholar
  87. Horn, N., Swindell, S., Dodd, H. Gasson, M. (1991) Mol. Gen. Genet. 228, 129–135.PubMedCrossRefGoogle Scholar
  88. Hurst, A. (1966) J. Gen. Microbiol. 44, 209–220.PubMedGoogle Scholar
  89. Hurst, A. (1981) Adv. Appl. Microbiol. 27, 85–123.CrossRefGoogle Scholar
  90. Hynes, W. L., Ferretti, J. J. Tagg, J. R. (1993) Appl. Env. Microbiol. 59, 1969–1971.Google Scholar
  91. Ingram, L. C. (1969) Biochim. Biophys. Acta 184, 216–219.PubMedCrossRefGoogle Scholar
  92. Ingram, L. C. (1970) Biochim. Biophys. Acta 224, 263–265.PubMedGoogle Scholar
  93. Jack, R. W. Tagg, J. R. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 171–179, ESCOM, Leiden.Google Scholar
  94. Jack, R. W. Tagg, J. R. (1992) J. Med. Microbiol. 36, 132–138.PubMedCrossRefGoogle Scholar
  95. Jack, R., Benz, R., Tagg, J. Sahl, H.-G. (1994a) Eur. J. Biochem. 219, 699–705.PubMedCrossRefGoogle Scholar
  96. Jack, R. W., Carne, A., Metzger, J., Stevanovic, S., Sahl, H.-G., Jung, G. Tagg, J. (1994b) Eur. J. Biochem. 220, 455–462.PubMedCrossRefGoogle Scholar
  97. Jack, R. W., Tagg, J. R. Ray, B. (1995) Microbiol. Rev., in the press.Google Scholar
  98. James, R., Lazdunski, C. Pattus, E (eds) (1992) NATO ASI Ser. Ser. H: Cell Biol. 65.Google Scholar
  99. Jansen, E. F. Hirschmann, D. J. (1944) Arch. Biochem. 4, 297–309Google Scholar
  100. Jung, G. (1991a) Angew. Chem. Int. Ed. Engl. 30, 1051–1068.CrossRefGoogle Scholar
  101. Jung, G. ( 1991 b) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 1–34, ESCOM, Leiden.Google Scholar
  102. Jung, G. Sakti, H.-G. (1991) Nisin and novel lantibiotics, ESCOM, Leiden.Google Scholar
  103. Kaletta, C. Entian, K.-D. (1989) J. Bacteriol. 171, 1597–1601.PubMedGoogle Scholar
  104. Kaletta, C., Entian, K.-D., Kellner, R., Jung, G., Reis, M. Sahl, H.-G. (1989) Arch. Microbial. 152, 16–19.CrossRefGoogle Scholar
  105. Kaletta, C., Entian, K.-D. & Jung, G. (1991a) Eur. J. Biochem. 199, 411–415.CrossRefGoogle Scholar
  106. Kaletta, C., Klein, C., Schnell, N. Entian, K.-D. (1991b) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 309–319, ESCOM, Leiden.Google Scholar
  107. Katz, E. Demain, A. L. (1977) Bacteriol. Rev. 41, 449–474.PubMedGoogle Scholar
  108. Kellner, R., Jung, G., Hörner, T., Zähner, H., Schnell, N., Entian, K.-D. Götz, F. (1988) Eur. J. Biochem. 177, 53–59.PubMedCrossRefGoogle Scholar
  109. Kellner, R., Jung, G., Josten, M., Kaletta, C., Entian, K.-D. Sall, H.-G. (1989) Angew Chem. Int. Ed. Engl. -28, 616–619.CrossRefGoogle Scholar
  110. Kellner, R., Jung, G. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 141–158, ESCOM, Leiden.Google Scholar
  111. Kessler, H., Steuernagel, S., Gillessen, D. Kamiyama, T. (1987) Helv. Chim. Acta 70, 726–741.CrossRefGoogle Scholar
  112. Kessler, H., Steuernagel, S., Will, M., Jung, G., Kellner, R., Gillessen, D. Kamiyama, T. (1988) Helv. Chim. Acta 71, 1924–1929.CrossRefGoogle Scholar
  113. Kessler, H., Seip, S., Wein, T., Steuernagel, S. Will, M. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 7690, ESCOM, Leiden.Google Scholar
  114. Kettenring, J. K., Malabarba, A., Vekey, K. Cavalleri, B. (1990) J. Antibiot. 43, 1082–1088.PubMedGoogle Scholar
  115. Klaenhammer, T. R. (1993) FEMS Microbiol. Rev. 12, 39–86.PubMedGoogle Scholar
  116. Klein, C., Kaletta, C., Schnell, N. Entian, K.-D. (1992) Appl. Env. Microbiol. 58, 132–142.Google Scholar
  117. Klein, C., Kaletta, C. Entian, K.-D. (1993) Appl. Env. Microbiol. 59, 296–303.Google Scholar
  118. Klein, C. Entian, K.-D. (1994) Appl. Env. Microbiol. 60, 2793–2801.Google Scholar
  119. Kogler, H., Bauch, M., Fehlhaber, H.-W., Griesinger, C., Schubert, W. Teetz, V. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 159–170, ESCOM, Leiden.Google Scholar
  120. Kolier, R. Moreno, F. (1992) Annu. Rev. Microbiol. 46, 141–163.CrossRefGoogle Scholar
  121. Konisky, J. (1982) Annu. Rev. Microbiol. 36, 125–144.PubMedCrossRefGoogle Scholar
  122. Kordel, M., Benz, R. Sahl, H.-G. (1988) J. Bacteriol. 170, 84–88.PubMedGoogle Scholar
  123. Kordel, M., Schuller, F. Sahl, H.-G. (1989) FEBS Lett. 244, 99–102.PubMedCrossRefGoogle Scholar
  124. Kozak, W., Rajchert-Trzpil, M. Dobrzanski, W. T. (1974) J. Gen. Microbiol. 83, 295–302.Google Scholar
  125. Kuipers, O. P., Yap, W. M. G. J., Rollema, H. S., Beerthuyzen, M. M., Siezen, R. J. De Vos, W. M. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 250–259, ESCOM, Leiden.Google Scholar
  126. Kuipers, O. P., Rollema, H. S., Yap, W. M. G. J., Boot, H. J., Siezen, R. J. De Vos, W. M. (1992) J. Biol. Chem. 267, 24340–24346.PubMedGoogle Scholar
  127. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. De Vos, W. M. (1993a) Eur. J. Biochem. 216, 281–292.PubMedCrossRefGoogle Scholar
  128. Kuipers, O. P., Rollema, H. S., De Vos, W. M. Siezen, R. J. (1993b) FEBS Lett. 330, 23–27.PubMedCrossRefGoogle Scholar
  129. Kupke, T., Stevanovic, S., Sahl, H.-G. Götz, E. (1992) J. Bacteriol. 174, 5354–5361.PubMedGoogle Scholar
  130. Kupke, T., Stevanovic, S., Ottenwälder, B., Metzger, J. W., Jung, G. Götz, F. (1993) FEMS Microbiol. Lett. 112, 43–48.PubMedCrossRefGoogle Scholar
  131. Kupke, T., Kempter, C., Gnau, V., Jung, G. Götz, F. (1994) J. Biol. Chem. 269, 5653–5659.PubMedGoogle Scholar
  132. Lian, L.-Y., Chan, W. C., Morley, S. D., Roberts, G. C. K., Bycroft, B. W. Jackson, D. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 43–58, ESCOM, Leiden.Google Scholar
  133. Lian, L.-Y., Chan, W. C., Morley, S. D., Roberts, G. K. C., Bycroft, B. W. Jackson, D. (1992) Biochem. J. 283, 413–420.PubMedGoogle Scholar
  134. Linnett, P. E. Strominger, J. L. (1973) Antimicrob. Agents Chemother. 4, 231–236.PubMedGoogle Scholar
  135. Liu, W. Hansen, J. N. (1992) J. Biol. Chem. 267, 25078–25085.PubMedGoogle Scholar
  136. Liu, W. Hansen, J. N. (1993) Appl. Env. Microbiol. 59, 648–651.Google Scholar
  137. Märki, F. Franson, R. (1986) Biochim. Biophys. Acta 879, 149–156.PubMedGoogle Scholar
  138. Märki, F., Hänni, E., Fredenhagen, A. Van Oostrum, J. (1991) Biochem. Pharmacol. 42, 2027–2035.PubMedCrossRefGoogle Scholar
  139. Malabarba, A., Pallanza, R., Berti, M. Cavalleri, B. (1990) J. Antibiot. 43, 1089–1097.PubMedGoogle Scholar
  140. Mattick, A. T. R. Hirsch, A. (1944) Nature 154, 551–552.CrossRefGoogle Scholar
  141. Meyer, H. E. (1994) in Microcharacterization of proteins (Kellner, R., Lottspeich, E Meyer, H. E., eds) pp. 131–146, VCH, Weinheim.CrossRefGoogle Scholar
  142. Mignogna, G., Simmaco, M., Kreil, G. Barra, D. (1993) EMBO J. 12, 4829–4832.PubMedGoogle Scholar
  143. Molitor, E. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 434–439, ESCOM, Leiden.Google Scholar
  144. Mortvedt, C. I. & Nes, I. F. (1990) J. Gen. Microbiol. 136, 1601–1607.Google Scholar
  145. Mortvedt, C. I., Nissen-Meyer, J., Sletten, K. Nes, I. F. (1991) Appl. Env. Microbiol. 57, 1829–1834.Google Scholar
  146. Msadek, T., Kunst, F. Rapoport, G. (1993) in Bacillus subtilis and other Gram-positive bacteria (Sonenshein, A. L., Hoch, J. A. Losick, R., eds) pp. 729–746, American Society for Microbiology, Washington DC.Google Scholar
  147. Mulders, J. W. M., Boerrigter, I. J., Rollema, H. S., Siezen, R. J. De Vos, W. M. (1991) Eur. J. Biochem. 201, 581–584.PubMedCrossRefGoogle Scholar
  148. Nakamura, S. Racker, E. (1984) Biochemistry 23, 385–389.PubMedCrossRefGoogle Scholar
  149. Naruse, N., Tenmyo, O., Tornita, K., Konishi, M., Miyaki, T., Kawaguchi, H., Fukase, K., Wakamiya, T. Shiba, T. (1989) J. Antibiot. 42, 837–845.PubMedGoogle Scholar
  150. Navarro, J., Chabot, J., Sherrill, K., Aneja, R., Zahler, S. A. Racker, E. (1985) Biochemistry 24, 4645–4650.PubMedCrossRefGoogle Scholar
  151. Nishikawa, M., Teshima, T., Wakamiya, T., Shiba, T., Kobayashi, Y., Okubo, T., Kyogoku, Y. Kido, Y. (1988) in Peptide chemistry 1987 (Shiba, T. Sakakibara, S., eds) pp. 71–74, Protein Research Foundation, Osaka.Google Scholar
  152. Nishio, C., Komura, S. Kurahashi, K. (1983) Biochem. Biophys. Res. Commun. 116, 751–758.PubMedCrossRefGoogle Scholar
  153. Nissen-Meyer, J., Havarstein, L. S., Hobo, H., Sletten, K. Nes, I. E. (1993) J. Gen. Microbiol. 139, 1503–1522.PubMedGoogle Scholar
  154. Novak, J., Canfield, P. W. Miller, E. J. (1994) J. Bacteriol. 176, 4316–4320.PubMedGoogle Scholar
  155. Palmer, D. E., Mierke, D. F., Pattaroni, C., Goodman, M., Wakamiya, T., Fukase, K., Kitazawa, M., Fujita, H. Shiba, T. (1989) Biopolymers 28, 397–408.PubMedCrossRefGoogle Scholar
  156. Parenti, F., Pagani, H. Beretta, G. (1976) J. Antibiot. 29, 501–506.PubMedGoogle Scholar
  157. Peschel, A., Augustin, J., Kupke, T., Stevanovic, S. Götz, F. (1993) Mol. Microbiol. 9, 31–39.PubMedCrossRefGoogle Scholar
  158. Piard, J.-C., Muriana, R. M., Desmazeaud, M. J. Klaenhammer, T. R. (1992) Appl. Env. Microbiol. 58, 279–284.Google Scholar
  159. Piard, J.-C., Delorme, C., Novel, M., Desmazeaud, M. Novel, G. (1993a) FEMS Microbiol. Lett. 112, 313–318.PubMedCrossRefGoogle Scholar
  160. Piard, J.-C., Kuipers, O. P., Rollema, H. S., Desmazeaud, M. J. De Vos, W. M. (1993b) J. Biol. Chem. 268, 16361–16368.PubMedGoogle Scholar
  161. Pugsley, A. (1993) Microbiol. Rev. 57, 50–108.PubMedGoogle Scholar
  162. Racker, E., Riegler, C. Abdel-Ghany, M. (1984) Cancer Res. 44, 1364–1367.PubMedGoogle Scholar
  163. Ramseier, H. R. (1960) Arch. Microbiol. 37, 57–94.CrossRefGoogle Scholar
  164. Rauch, P. J. G. de Vos, W. M. (1992) J. Bacteriol. 174, 1280–1287.PubMedGoogle Scholar
  165. Ray, B. Daeschel, M. (eds) (1992) Food biopreservatives of microbial origin, CRC Press, Boca Raton FL.Google Scholar
  166. Reis, M. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 320–331, ESCOM, Leiden.Google Scholar
  167. Reis, M., Eschbach-Bludau, M., Iglesias-Wind, M. I., Kupke, T. Sahl, H.-G. (1994) Appl. Env. Microbiol. 60, 2876–2883.Google Scholar
  168. Reisinger, R, Seidel, H., Tschesche, H. Hammes, W. P. (1980) Arch. Microbiol. 127, 187–193.PubMedCrossRefGoogle Scholar
  169. Rince, A., Dufour, A., Le Pogam, S., Thuault, D., Bourgeois, C. M. Le Pennec, J. R (1994) Appl. Env. Microbiol. 60, 1652–1657.Google Scholar
  170. Rintala, H., Graeffe, T., Paulin, L., Kalkkinn, N. Saris, R E. J. (1993) Biotechnol. Lett. 15, 991–996.CrossRefGoogle Scholar
  171. Rogers, L. A. Whittier, E. O. (1928) J. Bacteriol. 16, 211–219.PubMedGoogle Scholar
  172. Rollema, H. S., Both, P. Siezen, R. J. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 123–130, ESCOM, Leiden.Google Scholar
  173. Ross, K. F., Ronson, C. W. Tagg, J. R. (1993) Appl. Environ. Microbiol. 59, 2014–2021.PubMedGoogle Scholar
  174. Ruhr, E. Sahl, H.-G. (1985) Antimicrob. Agents Chemother. 27, 841–845.PubMedGoogle Scholar
  175. Sahl, H.-G. Brandis, H. (1981) J. Gen. Microbiol. 127, 377–384.PubMedGoogle Scholar
  176. Sahl, H.-G. Brandis, H. (1982) Zentralbi. Bacteriol. Hyg., I. Abt. Orig. A 252, 166–175.Google Scholar
  177. Sahl, H.-G. Brandis, H. (1983) FEMS Microbiol. Lett. 16, 75–79.CrossRefGoogle Scholar
  178. Sahl, H.-G. (1985) J. Bacteriol. 162, 833–836.PubMedGoogle Scholar
  179. Sahl, H.-G., Kordel, M. Benz, R. (1987) Arch. Microbiol. 149, 120–124.PubMedCrossRefGoogle Scholar
  180. Sahl, H.-G., Reis, M., Eschbach, M., Szekat, C., Beck-Sickinger, A. G., Metzger, J., Stevanovic, S. Jung, G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 332–346, ESCOM, Leiden.Google Scholar
  181. Sahl, H.-G. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 347–358, ESCOM, Leiden.Google Scholar
  182. Sahl, H.-G. (1994a) Appl. Env. Microbiol. 60, 752–755.Google Scholar
  183. Sahl, H.-G. (1994b) in Antimicrobial peptides (Boman, H. G., Marsh, J. Goode, J. A., eds) pp. 27–53, Wiley Sons, Chichester.Google Scholar
  184. Schnell, N., Entian, K.-D., Schneider, U., Götz, E, Zähner, H., Kellner, R. Jung, G. (1988) Nature 333, 276–278.PubMedCrossRefGoogle Scholar
  185. Schnell, N., Entian, K.-D., Götz, F., Hörner, T., Kellner, R. Jung, G. (1989) FEMS Microbiol. Lett. 58, 263–268.CrossRefGoogle Scholar
  186. Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Götz, E Entian, K.-D. (1991) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 269–276, ESCOM, Leiden.Google Scholar
  187. Schnell, N., Engelke, G., Augustin, J., Rosenstein, R., Ungermann, V., Götz, E Entian, K.-D. (1992) Eur. J: Biochem. 204, 57–68.CrossRefGoogle Scholar
  188. Schuller, F., Benz, R. Sahl, H.-G. (1989) Eur J. Biochem. 182, 181–186.PubMedCrossRefGoogle Scholar
  189. Segarra, R. A., Booth, M. C., Morales, D. A., Huycke, M. M. Gilmore, M. S. (1991) Infect. Immun. 59, 1239–1246.PubMedGoogle Scholar
  190. Selsted, M. E., Brown, D. M., De Lange, R. J. Lehrer, R. I. (1983) J. Biol. Chem. 258, 14485–14489.PubMedGoogle Scholar
  191. Sheth, T. R., Henderson, R. M., Hladky, S. B. Cuthbert, A. W. (1992) Biochim. Biophys. Acta 1107, 179–185.PubMedCrossRefGoogle Scholar
  192. Shiba, T., Wakamiya, T., Fukase, K., Sano, A., Shimbo, K. Ueki, Y. (1986) Biopolymers 25, 511–519.Google Scholar
  193. Shotwell, O. L., Stodola, F. H., Michael, W. R., Lindenfelser, L. A., Dworschak, G. Pridham, T G (1958) J. Am. Chem. Soc. 80, 3912–3915.CrossRefGoogle Scholar
  194. Siezen, R. J. (1995) in Subtilisin Enzymes, Proceedings of the International Symposium (Egmond, M., Svendsen, I., Singh, T., Bott, R. Betzel, C., eds) Plenum Press, New York, in the press.Google Scholar
  195. Skaugen, M., Nissen-Meyer, J., Jung, G., Stevanovic, S., Sletten, K., Mortvedt Abildgaard, C. I. Nes, I. F. (1994) J. Biol. Chem. 269, 27183–27185.PubMedGoogle Scholar
  196. Skaugen, M. (1994) PhD thesis, Agricultural University of Norway.Google Scholar
  197. Slijper, M., Hilbers, C. W., Konings, R. N. H. van de Ven, F. J. M. (1989) FEBS Lett. 252, 22–28.CrossRefGoogle Scholar
  198. Sokolove, P. M., Westphal, P. A., Kester, M. B., Wierwille, R. SikoraVanMeter, K. (1989) Biochim. Biophys. Acta 983, 15–22.PubMedCrossRefGoogle Scholar
  199. Somma, S., Merati, W. Parenti, F. (1977) Antimicrob. Agents Chemother. 11, 396–401.PubMedGoogle Scholar
  200. Steen, M. T., Chung, Y. J. & Hansen, J. N. (1991) Appl. Env. Microbiol. 57, 1181–1188.Google Scholar
  201. Stevens, K. A., Sheldon, B. W., Klapes, N. A. Klaenhammer, T. R. (1991) Appl. Env. Microbiol. 57, 3613–3615.Google Scholar
  202. Steiner, H., Hultmark, D., Engström, A., Bennich, H. Boman, H. G. (1981) Nature 292, 246–248.PubMedCrossRefGoogle Scholar
  203. Stoffels, G., Nissen-Meyer, J., Gudmundsdottir, A., Sletten, K., Holo, H. Nes, I. E (1992) Appl. Env. Microbiol. 58, 1417–1422.Google Scholar
  204. Stoffels, G., Sahl, H.-G. Gudmundsdottir, A. (1993) Int. J. Food Microbiol. 20, 199–210.PubMedCrossRefGoogle Scholar
  205. Stoffels, G., Gudmundsdottir, A. Abee, T. (1994) Microbiology 140, 1443–1450.PubMedCrossRefGoogle Scholar
  206. Stone, D. K., Xie, X. S. Racker, E. (1984) J. Biol. Chem. 259, 2701–2703.PubMedGoogle Scholar
  207. Surovoy, A., Waidelich, D. Jung, G. (1993) in Proceedings of the 22nd European peptide symposium, Peptides 1992 (Schneider, C. H. Eberle, A. N., eds) pp. 563–564, ESCOM, Leiden.Google Scholar
  208. Tagg, J. R., Read, R. S. D. McGiven, A. R. (1971) Pathology 3, 277–278.CrossRefGoogle Scholar
  209. Tagg, J. R., Dajani, S., Wannamaker, L. W. Gray, E. D. (1973a) J. Exp. Med. 138, 1168–1183.PubMedCrossRefGoogle Scholar
  210. Tagg, J. R., Pihl, E. A. McGiven, A. R. (1973b) J. Gen. Microbiol. 79, 167–169.PubMedGoogle Scholar
  211. Tagg, J. R. Wannamaker, L. W. (1978) Antimicrob. Agents Chemother. 14, 31–39.PubMedGoogle Scholar
  212. Tsai, H.-J. Sandine, W. E. (1987) Appl. Env. Microbiol. 53, 352–357.Google Scholar
  213. Van Belkum, M J., Kok, J., Venema, G., Holo, H., Nes, I. F., Konings, W. N. Abee, T. (1991) J. Bacteriol. 173, 7934–7941.PubMedGoogle Scholar
  214. Van den Hooven, H. W, Fogolari, E, Rollema, H. S., Konings, R. N. H., Hilbers. C. W. Van de Ven, F. J. M. (1993) FEBS Lett. 319, 189–194.PubMedCrossRefGoogle Scholar
  215. Van de Kamp, M., Horstink, L. M., Van den Hooven, H. W., Konings, R. N. H., Hilbers, C. W., Frey, A., Sahl, H.-G., Metzger, J. W. Van de Ven, E J. M. (1995) Eur. J. Biochem. 227, 757–771.PubMedCrossRefGoogle Scholar
  216. Van der Meer, J. R., Polman, J., Beerthuyzen, M. M., Siezen, R. J., Kuipers, O. P. De Vos, W. M. (1993) J. Bacteriol. 175, 2578–2588.PubMedGoogle Scholar
  217. Van der Meer, J. R., Rollema, H. S., Siezen, R. J., Beerthuyzen, M. M., Kuipers, O. P. De Vos, W. M. (1994) J. Biol. Chem. 269, 3555–3562.PubMedGoogle Scholar
  218. Van de Ven, E J. M., Van den Hooven, H. W., Konings, R. N. H. Hilbers, C. W. (1991a) Eur. J. Biochem. 202, 1181–1188.PubMedCrossRefGoogle Scholar
  219. Van de Ven, F. J. M., Van den Hooven, H. W., Konings, R. N. H. Hilbers, C. W. (1991b) in Nisin and novel lantibiotics (Jung, G. Sahl, H.-G., eds) pp. 35–42, ESCOM, Leiden.Google Scholar
  220. Vogel, H., Nilsson, L., Rigler, R., Meder, S., Boheim, G, Beck, W., Kurth, H.-H. Jung, G. (1993) Eur. J. Biochem 212, 305–313.PubMedCrossRefGoogle Scholar
  221. Wakamiya, T., Ueki, Y., Shiba, T., Kido, Y. Motoki, Y. (1985) Tetrahedron Lett. 26, 665–668.CrossRefGoogle Scholar
  222. Wakamiya, T., Fukase, K., Naruse, N., Konishi, M. Shiba, T. (1988) Tetrahedron Lett. 29, 4771–4772.CrossRefGoogle Scholar
  223. Wanner, B. L. (1992) J. Bacteriol. 174, 2053–2058.PubMedGoogle Scholar
  224. Weil, H.-P., Beck-Sickinger, A. G., Metzger, J., Stevanovic, S., Jung, G., Josten, M. Sahl, H.-G. (1990) Eur. J. Biochem. 194, 217–223.PubMedCrossRefGoogle Scholar
  225. Xie, X. S., Stone, D. K. & Racker, E. (1983) J. Biol. Chem. 258, 14834–14836.PubMedGoogle Scholar
  226. Yorgey, P., Davagnino, J. Kolter, R. (1993) Mol. Microbiol. 9, 897–905.PubMedCrossRefGoogle Scholar
  227. Zimmermann, N. (1995) PhD Thesis, Universität Tübingen.Google Scholar
  228. Zimmermann, N., Freund, S., Fredenhagen, A. Jung, G. (1993) Eur. J. Biochem. 216, 419–428.PubMedCrossRefGoogle Scholar

Copyright information

© FEBS 1995

Authors and Affiliations

  • Hans-Georg Sahl
    • 1
  • Ralph W. Jack
    • 2
  • Gabriele Bierbaum
    • 1
  1. 1.Institut für Medizinische Mikrobiologie und ImmunologieUniversität BonnGermany
  2. 2.Russel Grimwade School of BiochemistryUniversity of MelbourneAustralia

Personalised recommendations