Skip to main content

Molecular-Dynamic Simulations of Structure Formation in Complex Materials

  • Chapter

Abstract

We are describing fundamental principles for molecular-dynamic simulations of structure formation in real materials at finite temperature. Various concepts for the calculation of total energies and interatomic forces are reviewed: Classical concepts based on the construction of empirical potentials and quantum-mechanical concepts combining the atom dynamics with a simultaneous solution of the electron problem of the many-atom configuration within density-functional theory. Out of these concepts we introduce in more detail a parameter-free density-functional-based nonorthogonal tight-binding scheme. This method combines the advantages of the simplicity and efficiency of semiempirical tight-binding approaches with the accuracy and transferability of ab initio calculations. After describing the simulation geometries and regimes for clusters, bulk structures and surface modifications the accuracy and high transferability of the interatomic potentials to the simulations of all-scale systems including also heteronuclear interactions are verified. Various successful applications of the method to the study of C60-polymerization, the stability of highly tetrahedral amorphous carbon and the characterization of diamond surface reconstructions are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982)

    Article  ADS  Google Scholar 

  2. W.E. Moerner and Th. Basché, Angew. Chemie 105, 537 (1993)

    Article  Google Scholar 

  3. B.A. Pailthorpe, J. Appl. Phys. 70, 543 (1991)

    Article  ADS  Google Scholar 

  4. W. Eckstein, Computer Simulation of Ion-Solid Interaction, (Springer, Heidelberg 1991)

    Book  Google Scholar 

  5. H. Balamane, T. Halicioglu, and W.A. Tiller, Phys. Rev. B 46, 2250 (1992)

    Article  ADS  Google Scholar 

  6. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, (Oxford University Press, Oxford 1989)

    Google Scholar 

  7. H.-P. Kaukonen and R.M. Nieminen, Phys. Rev. Lett. 68, 620 (1992)

    Article  ADS  Google Scholar 

  8. Th. Frauenheim, G. Jungnickel, Th. Köhler, and U. Stephan, J. Non-Cryst. Solids 182, 186 (1995)

    Article  ADS  Google Scholar 

  9. S. Skokov, B. Weiner, M. Frenklach, Th. Frauenheim, and M. Sternberg, Phys. Rev. B 52, 5426 (1995)

    Article  ADS  Google Scholar 

  10. K. Binder, ed., Monte Carlo Methods in Statistical Physics, 2nd ed., (Springer, Berlin 1984)

    Google Scholar 

  11. G. Ciccotti, D. Frenkel, and I.R. McDonald, eds., Simulation of Liquids and Solids, (North-Holland, Amsterdam 1990)

    Google Scholar 

  12. D.W. Heermann, Computational Simulation Methods in Theoretical Physics, 2nd ed., (Springer, Berlin 1990)

    Google Scholar 

  13. L. Verlet, Phys. Rev. 159, 98 (1967)

    Article  ADS  Google Scholar 

  14. J.E. Lennard-Jones, Proc. Royal Soc. A 106, 463 (1924)

    Article  ADS  Google Scholar 

  15. F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  16. R. Biswas and T.R. Hamann, Phys. Rev. B 36, 6434 (1987)

    Article  ADS  Google Scholar 

  17. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986) 632

    Article  ADS  Google Scholar 

  18. Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  19. Phys. Rev. Lett. 61, 2879 (1988)

    Article  ADS  Google Scholar 

  20. D.W. Brenner, Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  21. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864B (1964)

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  24. M.R. Pederson and K.A. Jackson, Phys. Rev. B 41, 7453 (1990)

    Article  ADS  Google Scholar 

  25. K. Raghavachari and J.S. Binkley, J. Chem. Phys. 87, 2191 (1987)

    Article  ADS  Google Scholar 

  26. O.F. Sankey and D.J. Niklewski, Phys. Rev. B 40, 3979 (1989)

    Article  ADS  Google Scholar 

  27. D.A. Drabold, P.A. Fedders, and P. Stumm, Phys. Rev. B 49, 16415 (1994)

    Article  ADS  Google Scholar 

  28. K. Laasonen and R.M. Nieminen, J. Phys. Condens. Matter 2, 1509 (1990)

    Article  ADS  Google Scholar 

  29. C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho, J. Phys. Condens. Matter 4, 6047 (1992)

    Article  ADS  Google Scholar 

  30. M. Menon, and K.R. Subbaswamy, Phys. Rev. B 47, 12754 (1993)

    Article  ADS  Google Scholar 

  31. L.M. Canel, A.E. Carlsson, and P.A. Fedders, Phys. Rev. B 48, 10739 (1993)

    Article  ADS  Google Scholar 

  32. D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert, and R. Kaschner, Phys. Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  33. G. Seifert and H. Eschrig, Phys. Stat. Sol. (b) 127, 573 (1985)

    Article  ADS  Google Scholar 

  34. G. Seifert, H. Eschrig, and W. Bieger, Z. Phys. Chem. (Leipzig) 267, 529 (1986)

    Google Scholar 

  35. H. Eschrig and I. Bergert, Phys. Stat. Sol. (b) 90, 621 (1978)

    Article  ADS  Google Scholar 

  36. G. Seifert and R.O. Jones, Z. Phys. D 20, 77 (1991)

    Article  ADS  Google Scholar 

  37. P. Blaudeck, T. Frauenheim, D. Porezag, G. Seifert, and E. Fromm, J. Phys. Condens. Matter 4, 6389 (1992)

    Article  ADS  Google Scholar 

  38. W.M.C. Foulkes, R. Haydock, Phys. Rev. B 39, 12521 (1989)

    Article  ADS  Google Scholar 

  39. D. Tomanek and M.A. Schluter, Phys. Rev. B 36, 1208 (1987)

    Article  ADS  Google Scholar 

  40. H. Eschrig, Optimized LCAO Method and the Electronic Structure of Extended Systems, (Akademie, Berlin 1988)

    Google Scholar 

  41. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  42. R. Jansen and O.F. Sankey, Phys. Rev. B 36, 6520 (1987)

    Article  ADS  Google Scholar 

  43. N. Chetty, K. Stokbro, K.W. Jakobsen and J.K. Norskov, Phys. Rev. B 46, 3798 (1992)

    Article  ADS  Google Scholar 

  44. J.E. Inglesfield, Mol. Phys. 37, 873 (1979)

    Article  ADS  Google Scholar 

  45. H. Eschrig, Phys. Stat. Sol. (b) 96, 329 (1979)

    Article  ADS  Google Scholar 

  46. P. Ordejon, D.A. Drabold, R.M. Martin, and M.P. Grumbach, Phys. Rev. B 48, 14646 (1993)

    Article  ADS  Google Scholar 

  47. P. Ordejon, D.A. Drabold, R.M. Martin, and M.P. Grumbach *** Phys. Rev. B 51, 1456 (1995)

    Article  ADS  Google Scholar 

  48. D. Hohl, R.O. Jones, R. Car, and M. Parrinello, Chem. Phys. Lett. 139, 540 (1987)

    Article  ADS  Google Scholar 

  49. Q. Ran, R.W. Schmude, M. Miller, and K.A. Gingerich, Chem. Phys. Lett. 230, 337 (1994)

    Article  ADS  Google Scholar 

  50. K. Raghavachari and C.M. Rohlfing, J. Chem. Phys. 89, 2219 (1988)

    Article  ADS  Google Scholar 

  51. L.A. Curtiss, P.W. Deutsch, and K. Raghavachari, J. Chem. Phys. 96, 6868 (1992)

    Article  ADS  Google Scholar 

  52. Th. Frauenheim, F. Weich, Th. Köhler, D. Porezag, and G. Seifert, Phys. Rev. B, 52, 11492 (1995)

    Article  ADS  Google Scholar 

  53. M.R. Pederson and K.A. Jackson, Phys. Rev. B 43, 7312 (1991)

    Article  ADS  Google Scholar 

  54. P.J. Ordejon, D. Lebedenko, and M. Menon, Phys. Rev. B 50, 5645 (1994)

    Article  ADS  Google Scholar 

  55. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  56. J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992)

    Article  ADS  Google Scholar 

  57. B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 98, 5621 (1993)

    Article  ADS  Google Scholar 

  58. I. Kwon, R. Biswas, C.Z. Wang, K.M. Ho, and C.M. Soukoulis, Phys. Rev. B 49, 7242 (1994)

    Article  ADS  Google Scholar 

  59. J.L. Mercer and M.Y. Chou, Phys. Rev. B 49, 8506 (1994)

    Article  ADS  Google Scholar 

  60. M.T. Yin and M.L. Cohen, Phys. Rev. B 24, 6121 (1981)

    Article  ADS  Google Scholar 

  61. M.T. Yin and M.L. Cohen, Phys. Rev. B 29, 6996 (1984)

    Article  ADS  Google Scholar 

  62. W.I. Kamitakahara, NIST, Reactor Radiation Division, Gaithersburg, MD 20899, private communication

    Google Scholar 

  63. H.W. Kroto, J.R. Heath, S.C. O’Brian, R.F. Curl, and R.E. Smalley, Nature (London) 318, 162 (1985)

    Article  ADS  Google Scholar 

  64. Y. Wang, J.M. Holden, X. Bi, and P.C. Eklund, Chem. Phys. Lett. 217, 3 (1993)

    Google Scholar 

  65. Y. Wang, J.M. Holden, Z. Dong, X. Bi, and P.C. Eklund, Chem. Phys. Lett. 211, 341 (1993)

    Article  ADS  Google Scholar 

  66. D.L. Strout, R.L. Murry, C. Xu, W.C. Eckhoff, G.K. Odom, Y. Wang, Chem. Phys. Lett. 214, 576 (1993)

    Article  ADS  Google Scholar 

  67. G.B. Adams, J.B. Page, O.F. Sankey, M. O’Keeffe, Phys. Rev. B 50, 17471 (1994)

    Article  ADS  Google Scholar 

  68. M.R. Pederson and A.A. Quong, Phys. Rev. Lett. 74, 2319 (1995)

    Article  ADS  Google Scholar 

  69. J. Robertson, Diamond Related Materials 2, 984 (1993)

    Article  Google Scholar 

  70. D.R. McKenzie, D. Muller, and P.A. Pailthorpe, Phys. Rev. Lett. 67, 773 (1991)

    Article  ADS  Google Scholar 

  71. V.S. Veerasamy, J. Yuan, G.A.J. Amaratunga, W.I. Milne, K.W.R. Gilkes, M. Weiler, and L.M. Brown, Phys. Rev. B 48, 17954 (1994)

    Article  ADS  Google Scholar 

  72. V.S. Veerasamy, G.A.J. Amaratunga, C.A. Davis, A.E. Tins, W.I. Milne, and D.R. McKenzie, J. Phys. Condens. Matter 5, L169 (1993)

    Article  ADS  Google Scholar 

  73. G. Galli, R.M. Martin, R. Car, and M. Parinello, Phys. Rev. B 42, 7470 (1990)

    Article  ADS  Google Scholar 

  74. C.Z. Wang, K.M. Ho, and C.T. Chan, Phys. Rev. Lett. 70, 611 (1993)

    Article  ADS  Google Scholar 

  75. Th. Frauenheim, G. Jungnickel, Th. Koehler, and U. Stephan, J. Non-Cryst. Solids 182, 186 (1995)

    Article  ADS  Google Scholar 

  76. B.J. Waclawski, D.T. Pierce, N. Swanson, and R.J. Celotta, J. Vac. Sci. Technol. 21, 368 (1982)

    Article  ADS  Google Scholar 

  77. S.-T. Lee and G. Apai, Phys. Rev. B 48, 2684 (1993)

    Article  ADS  Google Scholar 

  78. H.-G. Busmann, W. Zimmermann-Edling, S. Lauer, H. Hertel, Th. Frauenheim, P. Blaudeck, and D. Porezag, Surf. Sci. 295, 340 (1993)

    Article  ADS  Google Scholar 

  79. S. Iarlori, G. Galli, F. Gygi, M. Parinello, and E. Tosatti, Phys. Rev. Lett. 69, 2947 (1992)

    Article  ADS  Google Scholar 

  80. S.H. Yang, D.A. Drabold, and J.B. Adams, Phys. Rev. B 48, 5261 (1993)

    Article  ADS  Google Scholar 

  81. F. Bechstedt and D. Reichardt, Surf. Sci. 202, 83 (1988)

    Article  ADS  Google Scholar 

  82. Th. Frauenheim, U. Stephan, P. Blaudeck, D. Porezag, H.-G. Busmann, W. Zimmermann-Edling, and S. Lauer, Phys. Rev. B 48, 18189 (1993)

    Article  ADS  Google Scholar 

  83. J. Furthmüller, J. Hafner, and G. Kresse, Europhys. Lett. 28, 659 (1994)

    Article  ADS  Google Scholar 

  84. D.R. Alfonso, D.A. Drabold, and S.E. Ulloa, Phys. Rev. B 51, 14669 (1995)

    Article  ADS  Google Scholar 

  85. Th. Frauenheim, Th. Köhler, M. Sternberg, D. Porezag, and M. Pederson, Thin Solid Films, (in print)

    Google Scholar 

  86. Th. Köhler, M. Sternberg, D. Porezag, and Th. Frauenheim, Phys. Stat. Sol. special issue March 1996

    Google Scholar 

  87. B.J. Garrison, E.J. Dawnkaski, D. Sriavastava, and D.W. Brenner, Science 255, 835 (1992)

    Article  ADS  Google Scholar 

  88. S.J. Harris and D.G. Goodwin, J. Phys. Chem. 97, 23 (1993)

    Article  Google Scholar 

  89. Th. Frauenheim and P. Blaudeck, Appl. Surf. Sci. 60/61, 182 (1992)

    Article  Google Scholar 

  90. H. Sasaki and H. Kawarada, Trans. Mat. Res. Soc. Jpn. 14B, 1475 (1994)

    Google Scholar 

  91. T. Aizawa, T. Ando, M. Kamo, and Y. Sato, Phys. Rev. B 48, 18348 (1993)

    Article  ADS  Google Scholar 

  92. B.D. Thoms, P.E. Pehrsson, and J.E. Butler, J. Appl. Phys. 75, 1804 (1994)

    Article  ADS  Google Scholar 

  93. B. Sun, X. Zhang, Q. Zhang, and Z. Lin, Appl. Phys. Lett. 62, 31 (1993)

    Article  ADS  Google Scholar 

  94. N.J. DiNardo, W.A. Thompson, A.J. Schell-Sorokin, and J.E. Dermuth, Phys. Rev. B 34, 3007 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frauenheim, T., Porezag, D., Köhler, T., Weich, F. (1996). Molecular-Dynamic Simulations of Structure Formation in Complex Materials. In: Hoffmann, K.H., Schreiber, M. (eds) Computational Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85238-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85238-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85240-4

  • Online ISBN: 978-3-642-85238-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics