Strategien zum Nachweis nicht anzüchtbarer Erreger

  • U. B. Göbel
Conference paper

Zusammenfassung

Der klassische Nachweis bakterieller Infektionserreger beruht auf der Kultur und nachfolgenden biochemischen Charakterisierung. Es handelt sich also um eine In-vivo-Amplifikation. Stehen geeignete Nährmedien zur Verfügung, können sich die Keime entsprechend ihrer Generationszeit vermehren. Es dauert z. B. bei Escherichia coli Stunden, bei Anaerobiern Tage, bei Mykobakterien sogar Wochen, bis die Bakterienmasse für weitergehende Untersuchungen ausreicht. Dieser kulturabhängige Nachweis von Bakterien erfolgte auch in anderen Bereichen mikrobiologischer Arbeit, z. B. bei der Beschreibung der physiologischen Flora der Haut, der Mundhöhle, des Darmes, der Scheide oder anderer komplexer mikrobieller Ökosysteme, z. B. Bodenbakterien.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J Bacteriol 172, 762–770PubMedGoogle Scholar
  2. 2.
    Amann RI, Springer N, Ludwig W, Görtz H et al. (1991) Identification in-situ and phylogeny of uncultured bacterial endosymbionts. Nature (London) 351: 161–164CrossRefGoogle Scholar
  3. 3.
    Böddinghaus B, RogallT, FlohrTet al. (1990) Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 28: 1751–1759Google Scholar
  4. 4.
    Böttger EC, Teske A, Kirschner Petal. (1992) Disseminated Mycobacterium genavense infection in patients with Aids. Lancet 340: 76–80PubMedCrossRefGoogle Scholar
  5. 5.
    Chen K, Neimark H, Rumore P et al. (1989) Broad range DNA probes for detecting and amplifying eubacterial nucleic acids. FEMS Microbiol Lett 48 (1): 19–24PubMedCrossRefGoogle Scholar
  6. 6.
    Choi BK, Paster BJ, Dewhirst FE et al. (1994) Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62: 1889–1895PubMedGoogle Scholar
  7. 7.
    Deng S, Hiruki C (1991) Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J Microbiol Meth 14: 53–61CrossRefGoogle Scholar
  8. 8.
    Distel DL, DeLong EF, Waterbury JB et al. (1991) Phylogenetic characterization and in-situ localization of the bacterial endosymbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl Environ Microbiol 57: 2376 2382Google Scholar
  9. 9.
    Edman JC, Kovacs JA, Masur H et al. (1988) Ribosomal RNA sequences show Pneumocystis carinii to be a member of the fungi. Nature (London) 334: 519–522CrossRefGoogle Scholar
  10. 10.
    Embley TM, Finlay BJ, Thomas RH et al. (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaebacterial endosymbiont. J Gen Microbiol 138: 1479–1487PubMedGoogle Scholar
  11. 10a.
    a.Fuhrmann JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356: 148–149CrossRefGoogle Scholar
  12. 11.
    Fox GE et al. (1980) The phylogeny of prokaryotes. Science 209: 457–463PubMedCrossRefGoogle Scholar
  13. 12.
    Giovanni SJ, BritschgiTB, Moyer OL et al. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature (London) 345: 60–63CrossRefGoogle Scholar
  14. 13.
    Göbel UB, Standbridge EJ (1984) Cloned mycoplasma ribosomal RNA genes for the detection of mycoplasma contamination in tissue cultures. Science 226: 1211–1213PubMedCrossRefGoogle Scholar
  15. 14.
    Göbel UB, Geiser A, Stanbridge EJ (1987) Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species. J Gen Microbiol 133: 1969–1974PubMedGoogle Scholar
  16. 15.
    Gutell RR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58: 10–26PubMedGoogle Scholar
  17. 16.
    Hahn D, Amman RI, Ludwig W et al. (1992) Detection of microorganisms in soil after in-situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138: 879–887PubMedGoogle Scholar
  18. 17.
    Kane MD, Poulsen LK, Stahl DA et al. (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59: 682–686PubMedGoogle Scholar
  19. 18.
    Larsen N, Olsen GJ, Maidak BL et al. (1993) The ribosomal database project. Nucl Acids Res 21: 3021–3023PubMedCrossRefGoogle Scholar
  20. 19.
    Lee IM, Hammond RW, Davis RE et al. (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasma-like organisms. Phytopathology 83: 834–842CrossRefGoogle Scholar
  21. 20.
    Liesack W, Stackebrandt C (1992) Occurrance of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174: 5072–5078PubMedGoogle Scholar
  22. 21.
    Marmur J, Lane D (1960) Strand separation and specific recombination in deoxyribonucleic acids: Biological studies. Proc Natl Acad Sci USA 46: 453–461PubMedCrossRefGoogle Scholar
  23. 22.
    Mullis KB, Faloona F (1987) Specific synthesis of DNA in-vitro via a polymerase catalysed chain reaction. Meth Enzymol 155: 335–350PubMedCrossRefGoogle Scholar
  24. 23.
    Olsen GJ et al. (1986) Microbial ecology and evolution: A ribosomal RNA approach. Annu Rev Microbiol 40: 337–365PubMedCrossRefGoogle Scholar
  25. 24.
    Olsen GJ, Woese CR, Overbeek R et al. (1994) The winds of (evolutionary) change: Breathing new life into microbiology. J Bacteriol 176: 1–6PubMedGoogle Scholar
  26. 25.
    O’Neill SL et al. (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA 80: 2699–2702Google Scholar
  27. 26.
    Pace NR, Stahl DA, Lane DJ et al. (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol 9: 1–55Google Scholar
  28. 27.
    Relmann DA et al. (1990) The agent of bacillary agiomatosis. An approach to the identification of uncultured pathogens. New Engl J Med 323: 1573–1380CrossRefGoogle Scholar
  29. 28.
    Relman DA et al. (1992) The identification of the uncultured bacillus of Whipple’s disease. New Engl J Med 327: 293–301PubMedCrossRefGoogle Scholar
  30. 29.
    Saiki RK, Scharf S, Faloona F et al. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354PubMedCrossRefGoogle Scholar
  31. 30.
    Schmidt TM, Delong EF, Pace NR et al. (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371–4378PubMedGoogle Scholar
  32. 31.
    Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature (London) 295: 618–620CrossRefGoogle Scholar
  33. 31a.
    Spring S, Amann R, Ludwig W et al. (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. System Appl Microbiol 15: 116–122Google Scholar
  34. 32.
    Stackebrandt E, Goodfellow M (Hrsg) (1991) Nucleic acid techniques in bacterial systematics. Wiley, ChichesterGoogle Scholar
  35. 33.
    Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature (London) 344: 63–65Google Scholar
  36. 34.
    Weisburg WG, Barns SM, Pelletier DA et al. (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703Google Scholar
  37. 35.
    Weller R, Ward DM (1989) Selective recovery of 16S rRNA sequences from natural communities in the form of eDNA. Appl Environ Microbiol 55: 1818–1822PubMedGoogle Scholar
  38. 36.
    Wilson KH et al. (1991) Phylogeny of the Whipple’s disease-associated bacterium. Lancet 338: 474–475PubMedCrossRefGoogle Scholar
  39. 37.
    Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  40. 38.
    Woese CR (1994) There must be a prokaryote somewhere: Microbiology’s search for itself. Microbiol Rev 58: 1–9PubMedGoogle Scholar
  41. 39.
    Zuckerkandl E, Pauling L (1965) Molecules as documents for evolutionary history. J Theor Biol 8: 357–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • U. B. Göbel

There are no affiliations available

Personalised recommendations